Changeset d067d45 for src/boundary.cpp


Ignore:
Timestamp:
Jul 23, 2009, 1:45:24 PM (16 years ago)
Author:
Frederik Heber <heber@…>
Branches:
Action_Thermostats, Add_AtomRandomPerturbation, Add_FitFragmentPartialChargesAction, Add_RotateAroundBondAction, Add_SelectAtomByNameAction, Added_ParseSaveFragmentResults, AddingActions_SaveParseParticleParameters, Adding_Graph_to_ChangeBondActions, Adding_MD_integration_tests, Adding_ParticleName_to_Atom, Adding_StructOpt_integration_tests, AtomFragments, Automaking_mpqc_open, AutomationFragmentation_failures, Candidate_v1.5.4, Candidate_v1.6.0, Candidate_v1.6.1, Candidate_v1.7.0, ChangeBugEmailaddress, ChangingTestPorts, ChemicalSpaceEvaluator, CombiningParticlePotentialParsing, Combining_Subpackages, Debian_Package_split, Debian_package_split_molecuildergui_only, Disabling_MemDebug, Docu_Python_wait, EmpiricalPotential_contain_HomologyGraph, EmpiricalPotential_contain_HomologyGraph_documentation, Enable_parallel_make_install, Enhance_userguide, Enhanced_StructuralOptimization, Enhanced_StructuralOptimization_continued, Example_ManyWaysToTranslateAtom, Exclude_Hydrogens_annealWithBondGraph, FitPartialCharges_GlobalError, Fix_BoundInBox_CenterInBox_MoleculeActions, Fix_ChargeSampling_PBC, Fix_ChronosMutex, Fix_FitPartialCharges, Fix_FitPotential_needs_atomicnumbers, Fix_ForceAnnealing, Fix_IndependentFragmentGrids, Fix_ParseParticles, Fix_ParseParticles_split_forward_backward_Actions, Fix_PopActions, Fix_QtFragmentList_sorted_selection, Fix_Restrictedkeyset_FragmentMolecule, Fix_StatusMsg, Fix_StepWorldTime_single_argument, Fix_Verbose_Codepatterns, Fix_fitting_potentials, Fixes, ForceAnnealing_goodresults, ForceAnnealing_oldresults, ForceAnnealing_tocheck, ForceAnnealing_with_BondGraph, ForceAnnealing_with_BondGraph_continued, ForceAnnealing_with_BondGraph_continued_betteresults, ForceAnnealing_with_BondGraph_contraction-expansion, FragmentAction_writes_AtomFragments, FragmentMolecule_checks_bonddegrees, GeometryObjects, Gui_Fixes, Gui_displays_atomic_force_velocity, ImplicitCharges, IndependentFragmentGrids, IndependentFragmentGrids_IndividualZeroInstances, IndependentFragmentGrids_IntegrationTest, IndependentFragmentGrids_Sole_NN_Calculation, JobMarket_RobustOnKillsSegFaults, JobMarket_StableWorkerPool, JobMarket_unresolvable_hostname_fix, MoreRobust_FragmentAutomation, ODR_violation_mpqc_open, PartialCharges_OrthogonalSummation, PdbParser_setsAtomName, PythonUI_with_named_parameters, QtGui_reactivate_TimeChanged_changes, Recreated_GuiChecks, Rewrite_FitPartialCharges, RotateToPrincipalAxisSystem_UndoRedo, SaturateAtoms_findBestMatching, SaturateAtoms_singleDegree, StoppableMakroAction, Subpackage_CodePatterns, Subpackage_JobMarket, Subpackage_LinearAlgebra, Subpackage_levmar, Subpackage_mpqc_open, Subpackage_vmg, Switchable_LogView, ThirdParty_MPQC_rebuilt_buildsystem, TrajectoryDependenant_MaxOrder, TremoloParser_IncreasedPrecision, TremoloParser_MultipleTimesteps, TremoloParser_setsAtomName, Ubuntu_1604_changes, stable
Children:
51c910
Parents:
ce5ac3 (diff), 437922 (diff)
Note: this is a merge changeset, the changes displayed below correspond to the merge itself.
Use the (diff) links above to see all the changes relative to each parent.
git-author:
Frederik Heber <heber@…> (07/23/09 12:34:47)
git-committer:
Frederik Heber <heber@…> (07/23/09 13:45:24)
Message:

Merge branch 'MultipleMolecules'

Conflicts:

molecuilder/src/analyzer.cpp
molecuilder/src/atom.cpp
molecuilder/src/boundary.cpp
molecuilder/src/boundary.hpp
molecuilder/src/builder.cpp
molecuilder/src/config.cpp
molecuilder/src/datacreator.hpp
molecuilder/src/helpers.cpp
molecuilder/src/joiner.cpp
molecuilder/src/moleculelist.cpp
molecuilder/src/molecules.cpp
molecuilder/src/molecules.hpp
molecuilder/src/parser.cpp
molecuilder/src/parser.hpp
molecuilder/src/vector.cpp
molecuilder/src/verbose.cpp

merges:

compilation fixes:

File:
1 edited

Legend:

Unmodified
Added
Removed
  • src/boundary.cpp

    rce5ac3 rd067d45  
    1 #include "molecules.hpp"
    21#include "boundary.hpp"
    32
    43#define DEBUG 1
    5 #define DoTecplotOutput 0
     4#define DoSingleStepOutput 0
     5#define DoTecplotOutput 1
    66#define DoRaster3DOutput 1
     7#define DoVRMLOutput 1
    78#define TecplotSuffix ".dat"
    89#define Raster3DSuffix ".r3d"
     10#define VRMLSUffix ".wrl"
     11#define HULLEPSILON MYEPSILON
    912
    1013// ======================================== Points on Boundary =================================
     
    2831{
    2932  cout << Verbose(5) << "Erasing point nr. " << Nr << "." << endl;
     33  if (!lines.empty())
     34    cerr << "WARNING: Memory Leak! I " << *this << " am still connected to some lines." << endl;
    3035  node = NULL;
    3136  lines.clear();
     
    3338;
    3439
    35 void
    36 BoundaryPointSet::AddLine(class BoundaryLineSet *line)
     40void BoundaryPointSet::AddLine(class BoundaryLineSet *line)
    3741{
    3842  cout << Verbose(6) << "Adding " << *this << " to line " << *line << "."
     
    101105      cout << Verbose(5) << *endpoints[i] << " has still lines it's attached to." << endl;
    102106  }
     107  if (!triangles.empty())
     108    cerr << "WARNING: Memory Leak! I " << *this << " am still connected to some triangles." << endl;
    103109}
    104110;
     
    109115  cout << Verbose(6) << "Add " << triangle->Nr << " to line " << *this << "."
    110116      << endl;
    111   triangles.insert(TrianglePair(TrianglesCount, triangle));
     117  triangles.insert(TrianglePair(triangle->Nr, triangle));
    112118  TrianglesCount++;
    113119}
     
    205211
    206212  // make it always point inward (any offset vector onto plane projected onto normal vector suffices)
    207   if (endpoints[0]->node->x.Projection(&OtherVector) > 0)
     213  if (NormalVector.Projection(&OtherVector) > 0)
    208214    NormalVector.Scale(-1.);
    209215}
     
    565571;
    566572
    567 /** Creates the objects in a raster3d file (renderable with a header.r3d)
     573/** Creates the objects in a VRML file.
    568574 * \param *out output stream for debugging
    569  * \param *tecplot output stream for tecplot data
     575 * \param *vrmlfile output stream for tecplot data
     576 * \param *Tess Tesselation structure with constructed triangles
     577 * \param *mol molecule structure with atom positions
     578 */
     579void write_vrml_file(ofstream *out, ofstream *vrmlfile, class Tesselation *Tess, class molecule *mol)
     580{
     581  atom *Walker = mol->start;
     582  bond *Binder = mol->first;
     583  int i;
     584  Vector *center = mol->DetermineCenterOfAll(out);
     585  if (vrmlfile != NULL) {
     586    //cout << Verbose(1) << "Writing Raster3D file ... ";
     587    *vrmlfile << "#VRML V2.0 utf8" << endl;
     588    *vrmlfile << "#Created by molecuilder" << endl;
     589    *vrmlfile << "#All atoms as spheres" << endl;
     590    while (Walker->next != mol->end) {
     591      Walker = Walker->next;
     592      *vrmlfile << "Sphere {" << endl << "  "; // 2 is sphere type
     593      for (i=0;i<NDIM;i++)
     594        *vrmlfile << Walker->x.x[i]+center->x[i] << " ";
     595      *vrmlfile << "\t0.1\t1. 1. 1." << endl; // radius 0.05 and white as colour
     596    }
     597
     598    *vrmlfile << "# All bonds as vertices" << endl;
     599    while (Binder->next != mol->last) {
     600      Binder = Binder->next;
     601      *vrmlfile << "3" << endl << "  "; // 2 is round-ended cylinder type
     602      for (i=0;i<NDIM;i++)
     603        *vrmlfile << Binder->leftatom->x.x[i]+center->x[i] << " ";
     604      *vrmlfile << "\t0.03\t";
     605      for (i=0;i<NDIM;i++)
     606        *vrmlfile << Binder->rightatom->x.x[i]+center->x[i] << " ";
     607      *vrmlfile << "\t0.03\t0. 0. 1." << endl; // radius 0.05 and blue as colour
     608    }
     609
     610    *vrmlfile << "# All tesselation triangles" << endl;
     611    for (TriangleMap::iterator TriangleRunner = Tess->TrianglesOnBoundary.begin(); TriangleRunner != Tess->TrianglesOnBoundary.end(); TriangleRunner++) {
     612      *vrmlfile << "1" << endl << "  "; // 1 is triangle type
     613      for (i=0;i<3;i++) { // print each node
     614        for (int j=0;j<NDIM;j++)  // and for each node all NDIM coordinates
     615          *vrmlfile << TriangleRunner->second->endpoints[i]->node->x.x[j]+center->x[j] << " ";
     616        *vrmlfile << "\t";
     617      }
     618      *vrmlfile << "1. 0. 0." << endl;  // red as colour
     619      *vrmlfile << "18" << endl << "  0.5 0.5 0.5" << endl; // 18 is transparency type for previous object
     620    }
     621  } else {
     622    cerr << "ERROR: Given vrmlfile is " << vrmlfile << "." << endl;
     623  }
     624  delete(center);
     625};
     626
     627/** Creates the objects in a raster3d file (renderable with a header.r3d).
     628 * \param *out output stream for debugging
     629 * \param *rasterfile output stream for tecplot data
    570630 * \param *Tess Tesselation structure with constructed triangles
    571631 * \param *mol molecule structure with atom positions
     
    603663
    604664    *rasterfile << "# All tesselation triangles" << endl;
     665    *rasterfile << "8\n  25. -1.   1. 1. 1.   0.0    0 0 0 2\n  SOLID     1.0 0.0 0.0\n  BACKFACE  0.3 0.3 1.0   0 0\n";
    605666    for (TriangleMap::iterator TriangleRunner = Tess->TrianglesOnBoundary.begin(); TriangleRunner != Tess->TrianglesOnBoundary.end(); TriangleRunner++) {
    606667      *rasterfile << "1" << endl << "  ";  // 1 is triangle type
     
    613674      *rasterfile << "18" << endl << "  0.5 0.5 0.5" << endl;  // 18 is transparency type for previous object
    614675    }
     676    *rasterfile << "9\n  terminating special property\n";
    615677  } else {
    616678    cerr << "ERROR: Given rasterfile is " << rasterfile << "." << endl;
     
    673735 * Determines first the convex envelope, then tesselates it and calculates its volume.
    674736 * \param *out output stream for debugging
    675  * \param *tecplot output stream for tecplot data
     737 * \param *filename filename prefix for output of vertex data
    676738 * \param *configuration needed for path to store convex envelope file
    677739 * \param *BoundaryPoints NDIM set of boundary points on the projected plane per axis, on return if desired
     
    680742 */
    681743double
    682 VolumeOfConvexEnvelope(ofstream *out, ofstream *tecplot, config *configuration,
     744VolumeOfConvexEnvelope(ofstream *out, const char *filename, config *configuration,
    683745    Boundaries *BoundaryPtr, molecule *mol)
    684746{
     
    761823      y.CopyVector(&runner->second->endpoints[0]->node->x);
    762824      y.SubtractVector(&runner->second->endpoints[2]->node->x);
    763       a = sqrt(runner->second->endpoints[0]->node->x.Distance(
     825      a = sqrt(runner->second->endpoints[0]->node->x.DistanceSquared(
    764826          &runner->second->endpoints[1]->node->x));
    765       b = sqrt(runner->second->endpoints[0]->node->x.Distance(
     827      b = sqrt(runner->second->endpoints[0]->node->x.DistanceSquared(
    766828          &runner->second->endpoints[2]->node->x));
    767       c = sqrt(runner->second->endpoints[2]->node->x.Distance(
     829      c = sqrt(runner->second->endpoints[2]->node->x.DistanceSquared(
    768830          &runner->second->endpoints[1]->node->x));
    769       G = sqrt(((a * a + b * b + c * c) * (a * a + b * b + c * c) - 2 * (a * a
    770           * a * a + b * b * b * b + c * c * c * c)) / 16.); // area of tesselated triangle
     831      G = sqrt(((a + b + c) * (a + b + c) - 2 * (a * a + b * b + c * c)) / 16.); // area of tesselated triangle
    771832      x.MakeNormalVector(&runner->second->endpoints[0]->node->x,
    772833          &runner->second->endpoints[1]->node->x,
     
    797858
    798859  // 8. Store triangles in tecplot file
     860  string OutputName(filename);
     861  OutputName.append(TecplotSuffix);
     862  ofstream *tecplot = new ofstream(OutputName.c_str());
    799863  write_tecplot_file(out, tecplot, TesselStruct, mol, 0);
     864  tecplot->close();
     865  delete(tecplot);
    800866
    801867  // free reference lists
     
    9981064          for (; C != PointsOnBoundary.end(); C++)
    9991065            {
    1000               tmp = A->second->node->x.Distance(&B->second->node->x);
     1066              tmp = A->second->node->x.DistanceSquared(&B->second->node->x);
    10011067              distance = tmp * tmp;
    1002               tmp = A->second->node->x.Distance(&C->second->node->x);
     1068              tmp = A->second->node->x.DistanceSquared(&C->second->node->x);
    10031069              distance += tmp * tmp;
    1004               tmp = B->second->node->x.Distance(&C->second->node->x);
     1070              tmp = B->second->node->x.DistanceSquared(&C->second->node->x);
    10051071              distance += tmp * tmp;
    10061072              DistanceMMap.insert(DistanceMultiMapPair(distance, pair<
     
    10701136            }
    10711137          // 4d. Check whether the point is inside the triangle (check distance to each node
    1072           tmp = checker->second->node->x.Distance(&A->second->node->x);
     1138          tmp = checker->second->node->x.DistanceSquared(&A->second->node->x);
    10731139          int innerpoint = 0;
    1074           if ((tmp < A->second->node->x.Distance(
     1140          if ((tmp < A->second->node->x.DistanceSquared(
    10751141              &baseline->second.first->second->node->x)) && (tmp
    1076               < A->second->node->x.Distance(
     1142              < A->second->node->x.DistanceSquared(
    10771143                  &baseline->second.second->second->node->x)))
    10781144            innerpoint++;
    1079           tmp = checker->second->node->x.Distance(
     1145          tmp = checker->second->node->x.DistanceSquared(
    10801146              &baseline->second.first->second->node->x);
    1081           if ((tmp < baseline->second.first->second->node->x.Distance(
     1147          if ((tmp < baseline->second.first->second->node->x.DistanceSquared(
    10821148              &A->second->node->x)) && (tmp
    1083               < baseline->second.first->second->node->x.Distance(
     1149              < baseline->second.first->second->node->x.DistanceSquared(
    10841150                  &baseline->second.second->second->node->x)))
    10851151            innerpoint++;
    1086           tmp = checker->second->node->x.Distance(
     1152          tmp = checker->second->node->x.DistanceSquared(
    10871153              &baseline->second.second->second->node->x);
    1088           if ((tmp < baseline->second.second->second->node->x.Distance(
     1154          if ((tmp < baseline->second.second->second->node->x.DistanceSquared(
    10891155              &baseline->second.first->second->node->x)) && (tmp
    1090               < baseline->second.second->second->node->x.Distance(
     1156              < baseline->second.second->second->node->x.DistanceSquared(
    10911157                  &A->second->node->x)))
    10921158            innerpoint++;
     
    14831549;
    14841550
     1551
     1552double det_get(gsl_matrix *A, int inPlace) {
     1553  /*
     1554  inPlace = 1 => A is replaced with the LU decomposed copy.
     1555  inPlace = 0 => A is retained, and a copy is used for LU.
     1556  */
     1557
     1558  double det;
     1559  int signum;
     1560  gsl_permutation *p = gsl_permutation_alloc(A->size1);
     1561  gsl_matrix *tmpA;
     1562
     1563  if (inPlace)
     1564  tmpA = A;
     1565  else {
     1566  gsl_matrix *tmpA = gsl_matrix_alloc(A->size1, A->size2);
     1567  gsl_matrix_memcpy(tmpA , A);
     1568  }
     1569
     1570
     1571  gsl_linalg_LU_decomp(tmpA , p , &signum);
     1572  det = gsl_linalg_LU_det(tmpA , signum);
     1573  gsl_permutation_free(p);
     1574  if (! inPlace)
     1575  gsl_matrix_free(tmpA);
     1576
     1577  return det;
     1578};
     1579
     1580void get_sphere(Vector *center, Vector &a, Vector &b, Vector &c, double RADIUS)
     1581{
     1582  gsl_matrix *A = gsl_matrix_calloc(3,3);
     1583  double m11, m12, m13, m14;
     1584
     1585  for(int i=0;i<3;i++) {
     1586    gsl_matrix_set(A, i, 0, a.x[i]);
     1587    gsl_matrix_set(A, i, 1, b.x[i]);
     1588    gsl_matrix_set(A, i, 2, c.x[i]);
     1589  }
     1590  m11 = det_get(A, 1);
     1591
     1592  for(int i=0;i<3;i++) {
     1593    gsl_matrix_set(A, i, 0, a.x[i]*a.x[i] + b.x[i]*b.x[i] + c.x[i]*c.x[i]);
     1594    gsl_matrix_set(A, i, 1, b.x[i]);
     1595    gsl_matrix_set(A, i, 2, c.x[i]);
     1596  }
     1597  m12 = det_get(A, 1);
     1598
     1599  for(int i=0;i<3;i++) {
     1600    gsl_matrix_set(A, i, 0, a.x[i]*a.x[i] + b.x[i]*b.x[i] + c.x[i]*c.x[i]);
     1601    gsl_matrix_set(A, i, 1, a.x[i]);
     1602    gsl_matrix_set(A, i, 2, c.x[i]);
     1603  }
     1604  m13 = det_get(A, 1);
     1605
     1606  for(int i=0;i<3;i++) {
     1607    gsl_matrix_set(A, i, 0, a.x[i]*a.x[i] + b.x[i]*b.x[i] + c.x[i]*c.x[i]);
     1608    gsl_matrix_set(A, i, 1, a.x[i]);
     1609    gsl_matrix_set(A, i, 2, b.x[i]);
     1610  }
     1611  m14 = det_get(A, 1);
     1612
     1613  if (fabs(m11) < MYEPSILON)
     1614    cerr << "ERROR: three points are colinear." << endl;
     1615
     1616  center->x[0] =  0.5 * m12/ m11;
     1617  center->x[1] = -0.5 * m13/ m11;
     1618  center->x[2] =  0.5 * m14/ m11;
     1619
     1620  if (fabs(a.Distance(center) - RADIUS) > MYEPSILON)
     1621    cerr << "ERROR: The given center is further way by " << fabs(a.Distance(center) - RADIUS) << " from a than RADIUS." << endl;
     1622
     1623  gsl_matrix_free(A);
     1624};
     1625
     1626
     1627
    14851628/**
    14861629 * Function returns center of sphere with RADIUS, which rests on points a, b, c
     
    14891632 * @param b vector second point of triangle
    14901633 * @param c vector third point of triangle
    1491  * @param *Umkreismittelpunkt new cneter point of circumference
    14921634 * @param Direction vector indicates up/down
    14931635 * @param AlternativeDirection vecotr, needed in case the triangles have 90 deg angle
     
    15001642 * @param Umkreisradius double radius of circumscribing circle
    15011643 */
    1502 
    1503   void Get_center_of_sphere(Vector* Center, Vector a, Vector b, Vector c, Vector *NewUmkreismittelpunkt, Vector* Direction, Vector* AlternativeDirection,
    1504       double HalfplaneIndicator, double AlternativeIndicator, double alpha, double beta, double gamma, double RADIUS, double Umkreisradius)
    1505   {
    1506     Vector TempNormal, helper;
    1507     double Restradius;
    1508     cout << Verbose(3) << "Begin of Get_center_of_sphere.\n";
    1509     Center->Zero();
    1510     helper.CopyVector(&a);
    1511     helper.Scale(sin(2.*alpha));
    1512     Center->AddVector(&helper);
    1513     helper.CopyVector(&b);
    1514     helper.Scale(sin(2.*beta));
    1515     Center->AddVector(&helper);
    1516     helper.CopyVector(&c);
    1517     helper.Scale(sin(2.*gamma));
    1518     Center->AddVector(&helper);
    1519     //*Center = a * sin(2.*alpha) + b * sin(2.*beta) + c * sin(2.*gamma) ;
    1520     Center->Scale(1./(sin(2.*alpha) + sin(2.*beta) + sin(2.*gamma)));
    1521     NewUmkreismittelpunkt->CopyVector(Center);
    1522     cout << Verbose(4) << "Center of new circumference is " << *NewUmkreismittelpunkt << ".\n";
    1523     // Here we calculated center of circumscribing circle, using barycentric coordinates
    1524     cout << Verbose(4) << "Center of circumference is " << *Center << " in direction " << *Direction << ".\n";
    1525 
    1526     TempNormal.CopyVector(&a);
    1527     TempNormal.SubtractVector(&b);
    1528     helper.CopyVector(&a);
    1529     helper.SubtractVector(&c);
    1530     TempNormal.VectorProduct(&helper);
    1531     if (fabs(HalfplaneIndicator) < MYEPSILON)
    1532       {
    1533         if ((TempNormal.ScalarProduct(AlternativeDirection) <0 and AlternativeIndicator >0) or (TempNormal.ScalarProduct(AlternativeDirection) >0 and AlternativeIndicator <0))
    1534           {
    1535             TempNormal.Scale(-1);
    1536           }
    1537       }
    1538     else
    1539       {
    1540         if (TempNormal.ScalarProduct(Direction)<0 && HalfplaneIndicator >0 || TempNormal.ScalarProduct(Direction)>0 && HalfplaneIndicator<0)
    1541           {
    1542             TempNormal.Scale(-1);
    1543           }
    1544       }
    1545 
    1546     TempNormal.Normalize();
    1547     Restradius = sqrt(RADIUS*RADIUS - Umkreisradius*Umkreisradius);
    1548     cout << Verbose(4) << "Height of center of circumference to center of sphere is " << Restradius << ".\n";
    1549     TempNormal.Scale(Restradius);
    1550     cout << Verbose(4) << "Shift vector to sphere of circumference is " << TempNormal << ".\n";
    1551 
    1552     Center->AddVector(&TempNormal);
    1553     cout << Verbose(4) << "Center of sphere of circumference is " << *Center << ".\n";
    1554     cout << Verbose(3) << "End of Get_center_of_sphere.\n";
    1555   }
    1556   ;
    1557 
     1644void Get_center_of_sphere(Vector* Center, Vector a, Vector b, Vector c, Vector *NewUmkreismittelpunkt, Vector* Direction, Vector* AlternativeDirection,
     1645    double HalfplaneIndicator, double AlternativeIndicator, double alpha, double beta, double gamma, double RADIUS, double Umkreisradius)
     1646{
     1647  Vector TempNormal, helper;
     1648  double Restradius;
     1649  Vector OtherCenter;
     1650  cout << Verbose(3) << "Begin of Get_center_of_sphere.\n";
     1651  Center->Zero();
     1652  helper.CopyVector(&a);
     1653  helper.Scale(sin(2.*alpha));
     1654  Center->AddVector(&helper);
     1655  helper.CopyVector(&b);
     1656  helper.Scale(sin(2.*beta));
     1657  Center->AddVector(&helper);
     1658  helper.CopyVector(&c);
     1659  helper.Scale(sin(2.*gamma));
     1660  Center->AddVector(&helper);
     1661  //*Center = a * sin(2.*alpha) + b * sin(2.*beta) + c * sin(2.*gamma) ;
     1662  Center->Scale(1./(sin(2.*alpha) + sin(2.*beta) + sin(2.*gamma)));
     1663  NewUmkreismittelpunkt->CopyVector(Center);
     1664  cout << Verbose(4) << "Center of new circumference is " << *NewUmkreismittelpunkt << ".\n";
     1665  // Here we calculated center of circumscribing circle, using barycentric coordinates
     1666  cout << Verbose(4) << "Center of circumference is " << *Center << " in direction " << *Direction << ".\n";
     1667
     1668  TempNormal.CopyVector(&a);
     1669  TempNormal.SubtractVector(&b);
     1670  helper.CopyVector(&a);
     1671  helper.SubtractVector(&c);
     1672  TempNormal.VectorProduct(&helper);
     1673  if (fabs(HalfplaneIndicator) < MYEPSILON)
     1674    {
     1675      if ((TempNormal.ScalarProduct(AlternativeDirection) <0 and AlternativeIndicator >0) or (TempNormal.ScalarProduct(AlternativeDirection) >0 and AlternativeIndicator <0))
     1676        {
     1677          TempNormal.Scale(-1);
     1678        }
     1679    }
     1680  else
     1681    {
     1682      if (TempNormal.ScalarProduct(Direction)<0 && HalfplaneIndicator >0 || TempNormal.ScalarProduct(Direction)>0 && HalfplaneIndicator<0)
     1683        {
     1684          TempNormal.Scale(-1);
     1685        }
     1686    }
     1687  TempNormal.Normalize();
     1688  Restradius = sqrt(RADIUS*RADIUS - Umkreisradius*Umkreisradius);
     1689  cout << Verbose(4) << "Height of center of circumference to center of sphere is " << Restradius << ".\n";
     1690  TempNormal.Scale(Restradius);
     1691  cout << Verbose(4) << "Shift vector to sphere of circumference is " << TempNormal << ".\n";
     1692
     1693  Center->AddVector(&TempNormal);
     1694  cout << Verbose(0) << "Center of sphere of circumference is " << *Center << ".\n";
     1695  get_sphere(&OtherCenter, a, b, c, RADIUS);
     1696  cout << Verbose(0) << "OtherCenter of sphere of circumference is " << OtherCenter << ".\n";
     1697  cout << Verbose(3) << "End of Get_center_of_sphere.\n";
     1698};
    15581699
    15591700/** This recursive function finds a third point, to form a triangle with two given ones.
     
    15801721 * @param mol molecule structure with atoms and bonds
    15811722 */
    1582 
    15831723void Tesselation::Find_next_suitable_point_via_Angle_of_Sphere(atom* a, atom* b, atom* c, atom* Candidate, atom* Parent,
    15841724    int RecursionLevel, Vector *Chord, Vector *direction1, Vector *OldNormal, Vector ReferencePoint,
     
    16331773    }
    16341774
    1635     if ((M_PI*4. > alpha*5.) && (M_PI*4. > beta*5.) && (M_PI*4 > gamma*5.)) {
     1775    if ((M_PI*179./180. > alpha) && (M_PI*179./180. > beta) && (M_PI*179./180. > gamma)) {
    16361776      Umkreisradius = SideA / 2.0 / sin(alpha);
    16371777      //cout << Umkreisradius << endl;
     
    16551795          cout << Verbose(3) << "Candidate is in search direction: " << sign << "." << endl;
    16561796        }
    1657 
    1658         Get_center_of_sphere(&Mittelpunkt, (a->x), (b->x), (Candidate->x), &NewUmkreismittelpunkt, OldNormal, direction1, sign, AlternativeSign, alpha, beta, gamma, RADIUS, Umkreisradius);
    1659 
    1660         AngleCheck.CopyVector(&ReferencePoint);
    1661         AngleCheck.Scale(-1);
    1662         //cout << "AngleCheck is " << AngleCheck.x[0] << " "<< AngleCheck.x[1] << " "<< AngleCheck.x[2] << " "<< endl;
    1663         AngleCheck.AddVector(&Mittelpunkt);
    1664         //cout << "AngleCheck is " << AngleCheck.x[0] << " "<< AngleCheck.x[1] << " "<< AngleCheck.x[2] << " "<< endl;
    1665         cout << Verbose(4) << "Reference vector to sphere's center is " << AngleCheck << "." << endl;
    1666 
    1667         BallAngle = AngleCheck.Angle(OldNormal);
    1668         cout << Verbose(3) << "Angle between normal of base triangle and center of ball sphere is :" << BallAngle << "." << endl;
    1669 
    1670         //cout << "direction1 is " << direction1->x[0] <<" "<< direction1->x[1] <<" "<< direction1->x[2] <<" " << endl;
    1671         //cout << "AngleCheck is " << AngleCheck.x[0] << " "<< AngleCheck.x[1] << " "<< AngleCheck.x[2] << " "<< endl;
     1797        if (sign >= 0) {
     1798          cout << Verbose(3) << "Candidate is in search direction: " << sign << "." << endl;
     1799          Get_center_of_sphere(&Mittelpunkt, (a->x), (b->x), (Candidate->x), &NewUmkreismittelpunkt, OldNormal, direction1, sign, AlternativeSign, alpha, beta, gamma, RADIUS, Umkreisradius);
     1800          Mittelpunkt.SubtractVector(&ReferencePoint);
     1801          cout << Verbose(3) << "Reference vector to sphere's center is " << Mittelpunkt << "." << endl;
     1802          BallAngle = Mittelpunkt.Angle(OldNormal);
     1803          cout << Verbose(3) << "Angle between normal of base triangle and center of ball sphere is :" << BallAngle << "." << endl;
     1804
    16721805
    16731806        cout << Verbose(3) << "BallAngle is " << BallAngle << " Sign is " << sign << endl;
    16741807
    1675         NewUmkreismittelpunkt.SubtractVector(&ReferencePoint);
    1676 
    1677         if ((AngleCheck.ScalarProduct(direction1) >=0) || (fabs(NewUmkreismittelpunkt.Norm()) < MYEPSILON)) {
    1678           if (Storage[0]< -1.5) { // first Candidate at all
    1679             if (1) {//if (CheckPresenceOfTriangle((ofstream *)&cout,a,b,Candidate)) {
    1680               cout << Verbose(2) << "First good candidate is " << *Candidate << " with ";
    1681               Opt_Candidate = Candidate;
    1682               Storage[0] = sign;
    1683               Storage[1] = AlternativeSign;
    1684               Storage[2] = BallAngle;
    1685               cout << " angle " << Storage[2] << " and Up/Down "
    1686               << Storage[0] << endl;
    1687             } else
    1688               cout << "Candidate " << *Candidate << " does not belong to a valid triangle." << endl;
    1689           } else {
    1690             if ( Storage[2] > BallAngle) {
    1691               if (1) { //if (CheckPresenceOfTriangle((ofstream *)&cout,a,b,Candidate)) {
    1692                 cout << Verbose(2) << "Next better candidate is " << *Candidate << " with ";
     1808          if ((Mittelpunkt.ScalarProduct(direction1) >=0) || (fabs(NewUmkreismittelpunkt.Norm()) < MYEPSILON)) {
     1809            if (Storage[0]< -1.5) { // first Candidate at all
     1810              if (1) {//if (CheckPresenceOfTriangle((ofstream *)&cout,a,b,Candidate)) {
     1811                cout << Verbose(2) << "First good candidate is " << *Candidate << " with ";
    16931812                Opt_Candidate = Candidate;
    16941813                Storage[0] = sign;
    16951814                Storage[1] = AlternativeSign;
    16961815                Storage[2] = BallAngle;
    1697                 cout << " angle " << Storage[2] << " and Up/Down "
    1698                 << Storage[0] << endl;
     1816                cout << " angle " << Storage[2] << " and Up/Down " << Storage[0] << endl;
    16991817              } else
    17001818                cout << "Candidate " << *Candidate << " does not belong to a valid triangle." << endl;
    17011819            } else {
    1702               if (DEBUG) {
    1703                 cout << Verbose(3) << *Candidate << " looses against better candidate " << *Opt_Candidate << "." << endl;
     1820              if ( Storage[2] > BallAngle) {
     1821                if (1) { //if (CheckPresenceOfTriangle((ofstream *)&cout,a,b,Candidate)) {
     1822                  cout << Verbose(2) << "Next better candidate is " << *Candidate << " with ";
     1823                  Opt_Candidate = Candidate;
     1824                  Storage[0] = sign;
     1825                  Storage[1] = AlternativeSign;
     1826                  Storage[2] = BallAngle;
     1827                  cout << " angle " << Storage[2] << " and Up/Down " << Storage[0] << endl;
     1828                } else
     1829                  cout << "Candidate " << *Candidate << " does not belong to a valid triangle." << endl;
     1830              } else {
     1831                if (DEBUG) {
     1832                  cout << Verbose(3) << *Candidate << " looses against better candidate " << *Opt_Candidate << "." << endl;
     1833                }
    17041834              }
     1835            }
     1836          } else {
     1837            if (DEBUG) {
     1838              cout << Verbose(3) << *Candidate << " refused due to Up/Down sign which is " << sign << endl;
    17051839            }
    17061840          }
    17071841        } else {
    17081842          if (DEBUG) {
    1709             cout << Verbose(3) << *Candidate << " refused due to Up/Down sign which is " << sign << endl;
     1843            cout << Verbose(3) << *Candidate << " is not in search direction." << endl;
    17101844          }
    17111845        }
     
    17411875
    17421876
    1743   /** This recursive function finds a third point, to form a triangle with two given ones.
    1744    * Two atoms are fixed, a candidate is supplied, additionally two vectors for direction distinction, a Storage area to \
    1745    *  supply results to the calling function, the radius of the sphere which the triangle shall support and the molecule \
    1746    *  upon which we operate.
    1747    *  If the candidate is more fitting to support the sphere than the already stored atom is, then we write its general \
    1748    *  direction and angle into Storage.
    1749    *  We the determine the recursive level we have reached and if this is not on the threshold yet, call this function again, \
    1750    *  with all neighbours of the candidate.
    1751    * @param a first point
    1752    * @param b second point
    1753    * @param Candidate base point along whose bonds to start looking from
    1754    * @param Parent point to avoid during search as its wrong direction
    1755    * @param RecursionLevel contains current recursion depth
    1756    * @param Chord baseline vector of first and second point
    1757    * @param d1 second in plane vector (along with \a Chord) of the triangle the baseline belongs to
    1758    * @param OldNormal normal of the triangle which the baseline belongs to
    1759    * @param Opt_Candidate candidate reference to return
    1760    * @param Opt_Mittelpunkt Centerpoint of ball, when resting on Opt_Candidate
    1761    * @param Storage array containing two angles of current Opt_Candidate
    1762    * @param RADIUS radius of ball
    1763    * @param mol molecule structure with atoms and bonds
    1764    */
    1765 void Find_next_suitable_point(atom* a, atom* b, atom* Candidate, atom* Parent,
    1766     int RecursionLevel, Vector *Chord, Vector *d1, Vector *OldNormal,
    1767     atom*& Opt_Candidate, Vector *Opt_Mittelpunkt, double *Storage, const double RADIUS, molecule* mol)
    1768 {
    1769   /* OldNormal is normal vector on the old triangle
    1770    * d1 is normal on the triangle line, from which we come, as well as on OldNormal.
    1771    * Chord points from b to a!!!
    1772    */
    1773   Vector dif_a; //Vector from a to candidate
    1774   Vector dif_b; //Vector from b to candidate
    1775   Vector AngleCheck, AngleCheckReference, DirectionCheckPoint;
    1776   Vector TempNormal, Umkreismittelpunkt, Mittelpunkt, helper;
    1777 
    1778   double CurrentEpsilon = 0.1;
    1779   double alpha, beta, gamma, SideA, SideB, SideC, sign, Umkreisradius, Restradius;
    1780   double BallAngle;
    1781   atom *Walker; // variable atom point
    1782 
    1783 
    1784   dif_a.CopyVector(&(a->x));
    1785   dif_a.SubtractVector(&(Candidate->x));
    1786   dif_b.CopyVector(&(b->x));
    1787   dif_b.SubtractVector(&(Candidate->x));
    1788   DirectionCheckPoint.CopyVector(&dif_a);
    1789   DirectionCheckPoint.Scale(-1);
    1790   DirectionCheckPoint.ProjectOntoPlane(Chord);
    1791 
    1792   SideA = dif_b.Norm();
    1793   SideB = dif_a.Norm();
    1794   SideC = Chord->Norm();
    1795   //Chord->Scale(-1);
    1796 
    1797   alpha = Chord->Angle(&dif_a);
    1798   beta = M_PI - Chord->Angle(&dif_b);
    1799   gamma = dif_a.Angle(&dif_b);
    1800 
    1801 
    1802   if (DEBUG) {
    1803     cout << "Atom number" << Candidate->nr << endl;
    1804     Candidate->x.Output((ofstream *) &cout);
    1805     cout << "number of bonds " << mol->NumberOfBondsPerAtom[Candidate->nr] << endl;
    1806   }
    1807 
    1808   if (a != Candidate and b != Candidate) {
    1809     //      alpha = dif_a.Angle(&dif_b) / 2.;
    1810     //      SideA = Chord->Norm() / 2.;// (Chord->Norm()/2.) / sin(0.5*alpha);
    1811     //      SideB = dif_a.Norm();
    1812     //      centerline = SideA * SideA + SideB * SideB - 2. * SideA * SideB * cos(
    1813     //          alpha); // note this is squared of center line length
    1814     //      centerline = (Chord->Norm()/2.) / sin(0.5*alpha);
    1815     // Those are remains from Freddie. Needed?
    1816 
    1817     Umkreisradius = SideA / 2.0 / sin(alpha);
    1818     //cout << Umkreisradius << endl;
    1819     //cout << SideB / 2.0 / sin(beta) << endl;
    1820     //cout << SideC / 2.0 / sin(gamma) << endl;
    1821 
    1822     if (Umkreisradius < RADIUS && DirectionCheckPoint.ScalarProduct(&(Candidate->x))>0) { //Checking whether ball will at least rest o points.
    1823       // intermediate calculations to aquire centre of sphere, called Mittelpunkt:
    1824       Umkreismittelpunkt.Zero();
    1825       helper.CopyVector(&a->x);
    1826       helper.Scale(sin(2.*alpha));
    1827       Umkreismittelpunkt.AddVector(&helper);
    1828       helper.CopyVector(&b->x);
    1829       helper.Scale(sin(2.*beta));
    1830       Umkreismittelpunkt.AddVector(&helper);
    1831       helper.CopyVector(&Candidate->x);
    1832       helper.Scale(sin(2.*gamma));
    1833       Umkreismittelpunkt.AddVector(&helper);
    1834       //Umkreismittelpunkt = (a->x) * sin(2.*alpha) + b->x * sin(2.*beta) + (Candidate->x) * sin(2.*gamma) ;
    1835       Umkreismittelpunkt.Scale(1/(sin(2*alpha) + sin(2*beta) + sin(2*gamma)));
    1836 
    1837       TempNormal.CopyVector(&dif_a);
    1838       TempNormal.VectorProduct(&dif_b);
    1839       if (TempNormal.ScalarProduct(OldNormal)<0 && sign>0 || TempNormal.ScalarProduct(OldNormal)>0 && sign<0) {
    1840         TempNormal.Scale(-1);
     1877/** Constructs the center of the circumcircle defined by three points \a *a, \a *b and \a *c.
     1878 * \param *Center new center on return
     1879 * \param *a first point
     1880 * \param *b second point
     1881 * \param *c third point
     1882 */
     1883void GetCenterofCircumcircle(Vector *Center, Vector *a, Vector *b, Vector *c)
     1884{
     1885  Vector helper;
     1886  double alpha, beta, gamma;
     1887  Vector SideA, SideB, SideC;
     1888  SideA.CopyVector(b);
     1889  SideA.SubtractVector(c);
     1890  SideB.CopyVector(c);
     1891  SideB.SubtractVector(a);
     1892  SideC.CopyVector(a);
     1893  SideC.SubtractVector(b);
     1894  alpha = M_PI - SideB.Angle(&SideC);
     1895  beta = M_PI - SideC.Angle(&SideA);
     1896  gamma = M_PI - SideA.Angle(&SideB);
     1897  cout << Verbose(3) << "INFO: alpha = " << alpha/M_PI*180. << ", beta = " << beta/M_PI*180. << ", gamma = " << gamma/M_PI*180. << "." << endl;
     1898  if (fabs(M_PI - alpha - beta - gamma) > HULLEPSILON)
     1899    cerr << "Sum of angles " << (alpha+beta+gamma)/M_PI*180. << " > 180 degrees by " << fabs(M_PI - alpha - beta - gamma)/M_PI*180. << "!" << endl;
     1900
     1901  Center->Zero();
     1902  helper.CopyVector(a);
     1903  helper.Scale(sin(2.*alpha));
     1904  Center->AddVector(&helper);
     1905  helper.CopyVector(b);
     1906  helper.Scale(sin(2.*beta));
     1907  Center->AddVector(&helper);
     1908  helper.CopyVector(c);
     1909  helper.Scale(sin(2.*gamma));
     1910  Center->AddVector(&helper);
     1911  Center->Scale(1./(sin(2.*alpha) + sin(2.*beta) + sin(2.*gamma)));
     1912};
     1913
     1914/** Returns the parameter "path length" for a given \a NewSphereCenter relative to \a OldSphereCenter on a circle on the plane \a CirclePlaneNormal with center \a CircleCenter and radius \a CircleRadius.
     1915 * Test whether the \a NewSphereCenter is really on the given plane and in distance \a CircleRadius from \a CircleCenter.
     1916 * It calculates the angle, making it unique on [0,2.*M_PI) by comparing to SearchDirection.
     1917 * Also the new center is invalid if it the same as the old one and does not lie right above (\a NormalVector) the base line (\a CircleCenter).
     1918 * \param CircleCenter Center of the parameter circle
     1919 * \param CirclePlaneNormal normal vector to plane of the parameter circle
     1920 * \param CircleRadius radius of the parameter circle
     1921 * \param NewSphereCenter new center of a circumcircle
     1922 * \param OldSphereCenter old center of a circumcircle, defining the zero "path length" on the parameter circle
     1923 * \param NormalVector normal vector
     1924 * \param SearchDirection search direction to make angle unique on return.
     1925 * \return Angle between \a NewSphereCenter and \a OldSphereCenter relative to \a CircleCenter, 2.*M_PI if one test fails
     1926 */
     1927double GetPathLengthonCircumCircle(Vector &CircleCenter, Vector &CirclePlaneNormal, double CircleRadius, Vector &NewSphereCenter, Vector &OldSphereCenter, Vector &NormalVector, Vector &SearchDirection)
     1928{
     1929  Vector helper;
     1930  double radius, alpha;
     1931
     1932  helper.CopyVector(&NewSphereCenter);
     1933  // test whether new center is on the parameter circle's plane
     1934  if (fabs(helper.ScalarProduct(&CirclePlaneNormal)) > HULLEPSILON) {
     1935    cerr << "ERROR: Something's very wrong here: NewSphereCenter is not on the band's plane as desired by " <<fabs(helper.ScalarProduct(&CirclePlaneNormal))  << "!" << endl;
     1936    helper.ProjectOntoPlane(&CirclePlaneNormal);
     1937  }
     1938  radius = helper.ScalarProduct(&helper);
     1939  // test whether the new center vector has length of CircleRadius
     1940  if (fabs(radius - CircleRadius) > HULLEPSILON)
     1941    cerr << Verbose(1) << "ERROR: The projected center of the new sphere has radius " << radius << " instead of " << CircleRadius << "." << endl;
     1942  alpha = helper.Angle(&OldSphereCenter);
     1943  // make the angle unique by checking the halfplanes/search direction
     1944  if (helper.ScalarProduct(&SearchDirection) < -HULLEPSILON)  // acos is not unique on [0, 2.*M_PI), hence extra check to decide between two half intervals
     1945    alpha = 2.*M_PI - alpha;
     1946  cout << Verbose(2) << "INFO: RelativeNewSphereCenter is " << helper << ", RelativeOldSphereCenter is " << OldSphereCenter << " and resulting angle is " << alpha << "." << endl;
     1947  radius = helper.Distance(&OldSphereCenter);
     1948  helper.ProjectOntoPlane(&NormalVector);
     1949  // check whether new center is somewhat away or at least right over the current baseline to prevent intersecting triangles
     1950  if ((radius > HULLEPSILON) || (helper.Norm() < HULLEPSILON)) {
     1951    cout << Verbose(2) << "INFO: Distance between old and new center is " << radius << " and between new center and baseline center is " << helper.Norm() << "." << endl;
     1952    return alpha;
     1953  } else {
     1954    cout << Verbose(1) << "ERROR: NewSphereCenter " << helper << " is too close to OldSphereCenter" << OldSphereCenter << "." << endl;
     1955    return 2.*M_PI;
     1956  }
     1957};
     1958
     1959
     1960/** This recursive function finds a third point, to form a triangle with two given ones.
     1961 * The idea is as follows: A sphere with fixed radius is (almost) uniquely defined in space by three points
     1962 * that sit on its boundary. Hence, when two points are given and we look for the (next) third point, then
     1963 * the center of the sphere is still fixed up to a single parameter. The band of possible values
     1964 * describes a circle in 3D-space. The old center of the sphere for the current base triangle gives
     1965 * us the "null" on this circle, the new center of the candidate point will be some way along this
     1966 * circle. The shorter the way the better is the candidate. Note that the direction is clearly given
     1967 * by the normal vector of the base triangle that always points outwards by construction.
     1968 * Hence, we construct a Center of this circle which sits right in the middle of the current base line.
     1969 * We construct the normal vector that defines the plane this circle lies in, it is just in the
     1970 * direction of the baseline. And finally, we need the radius of the circle, which is given by the rest
     1971 * with respect to the length of the baseline and the sphere's fixed \a RADIUS.
     1972 * Note that there is one difficulty: The circumcircle is uniquely defined, but for the circumsphere's center
     1973 * there are two possibilities which becomes clear from the construction as seen below. Hence, we must check
     1974 * both.
     1975 * Note also that the acos() function is not unique on [0, 2.*M_PI). Hence, we need an additional check
     1976 * to decide for one of the two possible angles. Therefore we need a SearchDirection and to make this check
     1977 * sensible we need OldSphereCenter to be orthogonal to it. Either we construct SearchDirection orthogonal
     1978 * right away, or -- what we do here -- we rotate the relative sphere centers such that this orthogonality
     1979 * holds. Then, the normalized projection onto the SearchDirection is either +1 or -1 and thus states whether
     1980 * the angle is uniquely in either (0,M_PI] or [M_PI, 2.*M_PI).
     1981 * @param BaseTriangle BoundaryTriangleSet of the current base triangle with all three points
     1982 * @param BaseLine BoundaryLineSet of BaseTriangle with the current base line
     1983 * @param OptCandidate candidate reference on return
     1984 * @param OptCandidateCenter candidate's sphere center on return
     1985 * @param ShortestAngle the current path length on this circle band for the current Opt_Candidate
     1986 * @param RADIUS radius of sphere
     1987 * @param *LC LinkedCell structure with neighbouring atoms
     1988 */
     1989// void Find_next_suitable_point(class BoundaryTriangleSet *BaseTriangle, class BoundaryLineSet *BaseLine, atom*& OptCandidate, Vector *OptCandidateCenter, double *ShortestAngle, const double RADIUS, LinkedCell *LC)
     1990// {
     1991//   atom *Walker = NULL;
     1992//   Vector CircleCenter;  // center of the circle, i.e. of the band of sphere's centers
     1993//   Vector CirclePlaneNormal; // normal vector defining the plane this circle lives in
     1994//   Vector OldSphereCenter;   // center of the sphere defined by the three points of BaseTriangle
     1995//   Vector NewSphereCenter;   // center of the sphere defined by the two points of BaseLine and the one of Candidate, first possibility
     1996//   Vector OtherNewSphereCenter;   // center of the sphere defined by the two points of BaseLine and the one of Candidate, second possibility
     1997//   Vector NewNormalVector;   // normal vector of the Candidate's triangle
     1998//   Vector SearchDirection;   // vector that points out of BaseTriangle and is orthonormal to its NormalVector (i.e. the desired direction for the best Candidate)
     1999//   Vector helper;
     2000//   LinkedAtoms *List = NULL;
     2001//   double CircleRadius; // radius of this circle
     2002//   double radius;
     2003//   double alpha, Otheralpha; // angles (i.e. parameter for the circle).
     2004//   double Nullalpha; // angle between OldSphereCenter and NormalVector of base triangle
     2005//   int N[NDIM], Nlower[NDIM], Nupper[NDIM];
     2006//   atom *Candidate = NULL;
     2007//
     2008//   cout << Verbose(1) << "Begin of Find_next_suitable_point" << endl;
     2009//
     2010//   cout << Verbose(2) << "INFO: NormalVector of BaseTriangle is " << BaseTriangle->NormalVector << "." << endl;
     2011//
     2012//   // construct center of circle
     2013//   CircleCenter.CopyVector(&(BaseLine->endpoints[0]->node->x));
     2014//   CircleCenter.AddVector(&BaseLine->endpoints[1]->node->x);
     2015//   CircleCenter.Scale(0.5);
     2016//
     2017//   // construct normal vector of circle
     2018//   CirclePlaneNormal.CopyVector(&BaseLine->endpoints[0]->node->x);
     2019//   CirclePlaneNormal.SubtractVector(&BaseLine->endpoints[1]->node->x);
     2020//
     2021//   // calculate squared radius of circle
     2022//   radius = CirclePlaneNormal.ScalarProduct(&CirclePlaneNormal);
     2023//   if (radius/4. < RADIUS*RADIUS) {
     2024//     CircleRadius = RADIUS*RADIUS - radius/4.;
     2025//     CirclePlaneNormal.Normalize();
     2026//     cout << Verbose(2) << "INFO: CircleCenter is at " << CircleCenter << ", CirclePlaneNormal is " << CirclePlaneNormal << " with circle radius " << sqrt(CircleRadius) << "." << endl;
     2027//
     2028//     // construct old center
     2029//     GetCenterofCircumcircle(&OldSphereCenter, &(BaseTriangle->endpoints[0]->node->x), &(BaseTriangle->endpoints[1]->node->x), &(BaseTriangle->endpoints[2]->node->x));
     2030//     helper.CopyVector(&BaseTriangle->NormalVector);  // normal vector ensures that this is correct center of the two possible ones
     2031//     radius = BaseLine->endpoints[0]->node->x.DistanceSquared(&OldSphereCenter);
     2032//     helper.Scale(sqrt(RADIUS*RADIUS - radius));
     2033//     OldSphereCenter.AddVector(&helper);
     2034//     OldSphereCenter.SubtractVector(&CircleCenter);
     2035//     cout << Verbose(2) << "INFO: OldSphereCenter is at " << OldSphereCenter << "." << endl;
     2036//
     2037//     // test whether old center is on the band's plane
     2038//     if (fabs(OldSphereCenter.ScalarProduct(&CirclePlaneNormal)) > HULLEPSILON) {
     2039//       cerr << "ERROR: Something's very wrong here: OldSphereCenter is not on the band's plane as desired by " << fabs(OldSphereCenter.ScalarProduct(&CirclePlaneNormal)) << "!" << endl;
     2040//       OldSphereCenter.ProjectOntoPlane(&CirclePlaneNormal);
     2041//     }
     2042//     radius = OldSphereCenter.ScalarProduct(&OldSphereCenter);
     2043//     if (fabs(radius - CircleRadius) < HULLEPSILON) {
     2044//
     2045//       // construct SearchDirection
     2046//       SearchDirection.MakeNormalVector(&BaseTriangle->NormalVector, &CirclePlaneNormal);
     2047//       helper.CopyVector(&BaseLine->endpoints[0]->node->x);
     2048//       for(int i=0;i<3;i++)  // just take next different endpoint
     2049//         if ((BaseTriangle->endpoints[i]->node != BaseLine->endpoints[0]->node) && (BaseTriangle->endpoints[i]->node != BaseLine->endpoints[1]->node)) {
     2050//           helper.SubtractVector(&BaseTriangle->endpoints[i]->node->x);
     2051//         }
     2052//       if (helper.ScalarProduct(&SearchDirection) < -HULLEPSILON)  // ohoh, SearchDirection points inwards!
     2053//         SearchDirection.Scale(-1.);
     2054//       SearchDirection.ProjectOntoPlane(&OldSphereCenter);
     2055//       SearchDirection.Normalize();
     2056//       cout << Verbose(2) << "INFO: SearchDirection is " << SearchDirection << "." << endl;
     2057//       if (fabs(OldSphereCenter.ScalarProduct(&SearchDirection)) > HULLEPSILON) {  // rotated the wrong way!
     2058//         cerr << "ERROR: SearchDirection and RelativeOldSphereCenter are still not orthogonal!" << endl;
     2059//       }
     2060//
     2061//       if (LC->SetIndexToVector(&CircleCenter)) {  // get cell for the starting atom
     2062//         for(int i=0;i<NDIM;i++) // store indices of this cell
     2063//           N[i] = LC->n[i];
     2064//         cout << Verbose(2) << "INFO: Center cell is " << N[0] << ", " << N[1] << ", " << N[2] << " with No. " << LC->index << "." << endl;
     2065//       } else {
     2066//         cerr << "ERROR: Vector " << CircleCenter << " is outside of LinkedCell's bounding box." << endl;
     2067//         return;
     2068//       }
     2069//       // then go through the current and all neighbouring cells and check the contained atoms for possible candidates
     2070//       cout << Verbose(2) << "LC Intervals:";
     2071//       for (int i=0;i<NDIM;i++) {
     2072//         Nlower[i] = ((N[i]-1) >= 0) ? N[i]-1 : 0;
     2073//         Nupper[i] = ((N[i]+1) < LC->N[i]) ? N[i]+1 : LC->N[i]-1;
     2074//         cout << " [" << Nlower[i] << "," << Nupper[i] << "] ";
     2075//       }
     2076//       cout << endl;
     2077//       for (LC->n[0] = Nlower[0]; LC->n[0] <= Nupper[0]; LC->n[0]++)
     2078//         for (LC->n[1] = Nlower[1]; LC->n[1] <= Nupper[1]; LC->n[1]++)
     2079//           for (LC->n[2] = Nlower[2]; LC->n[2] <= Nupper[2]; LC->n[2]++) {
     2080//             List = LC->GetCurrentCell();
     2081//             cout << Verbose(2) << "Current cell is " << LC->n[0] << ", " << LC->n[1] << ", " << LC->n[2] << " with No. " << LC->index << "." << endl;
     2082//             if (List != NULL) {
     2083//               for (LinkedAtoms::iterator Runner = List->begin(); Runner != List->end(); Runner++) {
     2084//                 Candidate = (*Runner);
     2085//
     2086//                 // check for three unique points
     2087//                 if ((Candidate != BaseTriangle->endpoints[0]->node) && (Candidate != BaseTriangle->endpoints[1]->node) && (Candidate != BaseTriangle->endpoints[2]->node)) {
     2088//                   cout << Verbose(1) << "INFO: Current Candidate is " << *Candidate << " at " << Candidate->x << "." << endl;
     2089//
     2090//                   // construct both new centers
     2091//                   GetCenterofCircumcircle(&NewSphereCenter, &(BaseLine->endpoints[0]->node->x), &(BaseLine->endpoints[1]->node->x), &(Candidate->x));
     2092//                   OtherNewSphereCenter.CopyVector(&NewSphereCenter);
     2093//
     2094//                   if ((NewNormalVector.MakeNormalVector(&(BaseLine->endpoints[0]->node->x), &(BaseLine->endpoints[1]->node->x), &(Candidate->x))) && (fabs(NewNormalVector.ScalarProduct(&NewNormalVector)) > HULLEPSILON)) {
     2095//                     helper.CopyVector(&NewNormalVector);
     2096//                     cout << Verbose(2) << "INFO: NewNormalVector is " << NewNormalVector << "." << endl;
     2097//                     radius = BaseLine->endpoints[0]->node->x.DistanceSquared(&NewSphereCenter);
     2098//                     if (radius < RADIUS*RADIUS) {
     2099//                       helper.Scale(sqrt(RADIUS*RADIUS - radius));
     2100//                       cout << Verbose(3) << "INFO: Distance of NewCircleCenter to NewSphereCenter is " << helper.Norm() << "." << endl;
     2101//                       NewSphereCenter.AddVector(&helper);
     2102//                       NewSphereCenter.SubtractVector(&CircleCenter);
     2103//                       cout << Verbose(2) << "INFO: NewSphereCenter is at " << NewSphereCenter << "." << endl;
     2104//
     2105//                       helper.Scale(-1.); // OtherNewSphereCenter is created by the same vector just in the other direction
     2106//                       OtherNewSphereCenter.AddVector(&helper);
     2107//                       OtherNewSphereCenter.SubtractVector(&CircleCenter);
     2108//                       cout << Verbose(2) << "INFO: OtherNewSphereCenter is at " << OtherNewSphereCenter << "." << endl;
     2109//
     2110//                       // check both possible centers
     2111//                       alpha = GetPathLengthonCircumCircle(CircleCenter, CirclePlaneNormal, CircleRadius, NewSphereCenter, OldSphereCenter, BaseTriangle->NormalVector, SearchDirection);
     2112//                       Otheralpha = GetPathLengthonCircumCircle(CircleCenter, CirclePlaneNormal, CircleRadius, OtherNewSphereCenter, OldSphereCenter, BaseTriangle->NormalVector, SearchDirection);
     2113//                       alpha = min(alpha, Otheralpha);
     2114//                       if (*ShortestAngle > alpha) {
     2115//                           OptCandidate = Candidate;
     2116//                           *ShortestAngle = alpha;
     2117//                           if (alpha != Otheralpha)
     2118//                             OptCandidateCenter->CopyVector(&NewSphereCenter);
     2119//                           else
     2120//                             OptCandidateCenter->CopyVector(&OtherNewSphereCenter);
     2121//                           cout << Verbose(1) << "We have found a better candidate: " << *OptCandidate << " with " << alpha << " and circumsphere's center at " << *OptCandidateCenter << "." << endl;
     2122//                       } else {
     2123//                         if (OptCandidate != NULL)
     2124//                           cout << Verbose(1) << "REJECT: Old candidate: " << *OptCandidate << " is better than " << alpha << " with " << *ShortestAngle << "." << endl;
     2125//                         else
     2126//                           cout << Verbose(2) << "REJECT: Candidate " << *Candidate << " with " << alpha << " was rejected." << endl;
     2127//                       }
     2128//
     2129//                     } else {
     2130//                       cout << Verbose(1) << "REJECT: NewSphereCenter " << NewSphereCenter << " is too far away: " << radius << "." << endl;
     2131//                     }
     2132//                   } else {
     2133//                     cout << Verbose(1) << "REJECT: Three points from " << *BaseLine << " and Candidate " << *Candidate << " are linear-dependent." << endl;
     2134//                   }
     2135//                 } else {
     2136//                   cout << Verbose(1) << "REJECT: Base triangle " << *BaseTriangle << " contains Candidate " << *Candidate << "." << endl;
     2137//                 }
     2138//               }
     2139//             }
     2140//           }
     2141//     } else {
     2142//       cerr << Verbose(1) << "ERROR: The projected center of the old sphere has radius " << radius << " instead of " << CircleRadius << "." << endl;
     2143//     }
     2144//   } else {
     2145//     cout << Verbose(1) << "Circumcircle for base line " << *BaseLine << " and base triangle " << *BaseTriangle << " is too big!" << endl;
     2146//   }
     2147//
     2148//   cout << Verbose(1) << "End of Find_next_suitable_point" << endl;
     2149// };
     2150
     2151
     2152/** This recursive function finds a third point, to form a triangle with two given ones.
     2153 * Note that this function is for the starting triangle.
     2154 * The idea is as follows: A sphere with fixed radius is (almost) uniquely defined in space by three points
     2155 * that sit on its boundary. Hence, when two points are given and we look for the (next) third point, then
     2156 * the center of the sphere is still fixed up to a single parameter. The band of possible values
     2157 * describes a circle in 3D-space. The old center of the sphere for the current base triangle gives
     2158 * us the "null" on this circle, the new center of the candidate point will be some way along this
     2159 * circle. The shorter the way the better is the candidate. Note that the direction is clearly given
     2160 * by the normal vector of the base triangle that always points outwards by construction.
     2161 * Hence, we construct a Center of this circle which sits right in the middle of the current base line.
     2162 * We construct the normal vector that defines the plane this circle lies in, it is just in the
     2163 * direction of the baseline. And finally, we need the radius of the circle, which is given by the rest
     2164 * with respect to the length of the baseline and the sphere's fixed \a RADIUS.
     2165 * Note that there is one difficulty: The circumcircle is uniquely defined, but for the circumsphere's center
     2166 * there are two possibilities which becomes clear from the construction as seen below. Hence, we must check
     2167 * both.
     2168 * Note also that the acos() function is not unique on [0, 2.*M_PI). Hence, we need an additional check
     2169 * to decide for one of the two possible angles. Therefore we need a SearchDirection and to make this check
     2170 * sensible we need OldSphereCenter to be orthogonal to it. Either we construct SearchDirection orthogonal
     2171 * right away, or -- what we do here -- we rotate the relative sphere centers such that this orthogonality
     2172 * holds. Then, the normalized projection onto the SearchDirection is either +1 or -1 and thus states whether
     2173 * the angle is uniquely in either (0,M_PI] or [M_PI, 2.*M_PI).
     2174 * @param NormalVector normal direction of the base triangle (here the unit axis vector, \sa Find_starting_triangle())
     2175 * @param SearchDirection general direction where to search for the next point, relative to center of BaseLine
     2176 * @param OldSphereCenter center of sphere for base triangle, relative to center of BaseLine, giving null angle for the parameter circle
     2177 * @param BaseLine BoundaryLineSet with the current base line
     2178 * @param ThirdNode third atom to avoid in search
     2179 * @param OptCandidate candidate reference on return
     2180 * @param OptCandidateCenter candidate's sphere center on return
     2181 * @param ShortestAngle the current path length on this circle band for the current Opt_Candidate
     2182 * @param RADIUS radius of sphere
     2183 * @param *LC LinkedCell structure with neighbouring atoms
     2184 */
     2185void Find_third_point_for_Tesselation(Vector NormalVector, Vector SearchDirection, Vector OldSphereCenter, class BoundaryLineSet *BaseLine, atom *ThirdNode, atom*& OptCandidate, Vector *OptCandidateCenter, double *ShortestAngle, const double RADIUS, LinkedCell *LC)
     2186{
     2187  Vector CircleCenter;  // center of the circle, i.e. of the band of sphere's centers
     2188  Vector CirclePlaneNormal; // normal vector defining the plane this circle lives in
     2189  Vector NewSphereCenter;   // center of the sphere defined by the two points of BaseLine and the one of Candidate, first possibility
     2190  Vector OtherNewSphereCenter;   // center of the sphere defined by the two points of BaseLine and the one of Candidate, second possibility
     2191  Vector NewNormalVector;   // normal vector of the Candidate's triangle
     2192  Vector helper;
     2193  LinkedAtoms *List = NULL;
     2194  double CircleRadius; // radius of this circle
     2195  double radius;
     2196  double alpha, Otheralpha; // angles (i.e. parameter for the circle).
     2197  int N[NDIM], Nlower[NDIM], Nupper[NDIM];
     2198  atom *Candidate = NULL;
     2199
     2200  cout << Verbose(1) << "Begin of Find_third_point_for_Tesselation" << endl;
     2201
     2202  cout << Verbose(2) << "INFO: NormalVector of BaseTriangle is " << NormalVector << "." << endl;
     2203
     2204  // construct center of circle
     2205  CircleCenter.CopyVector(&(BaseLine->endpoints[0]->node->x));
     2206  CircleCenter.AddVector(&BaseLine->endpoints[1]->node->x);
     2207  CircleCenter.Scale(0.5);
     2208
     2209  // construct normal vector of circle
     2210  CirclePlaneNormal.CopyVector(&BaseLine->endpoints[0]->node->x);
     2211  CirclePlaneNormal.SubtractVector(&BaseLine->endpoints[1]->node->x);
     2212
     2213  // calculate squared radius of circle
     2214  radius = CirclePlaneNormal.ScalarProduct(&CirclePlaneNormal);
     2215  if (radius/4. < RADIUS*RADIUS) {
     2216    CircleRadius = RADIUS*RADIUS - radius/4.;
     2217    CirclePlaneNormal.Normalize();
     2218    cout << Verbose(2) << "INFO: CircleCenter is at " << CircleCenter << ", CirclePlaneNormal is " << CirclePlaneNormal << " with circle radius " << sqrt(CircleRadius) << "." << endl;
     2219
     2220    // test whether old center is on the band's plane
     2221    if (fabs(OldSphereCenter.ScalarProduct(&CirclePlaneNormal)) > HULLEPSILON) {
     2222      cerr << "ERROR: Something's very wrong here: OldSphereCenter is not on the band's plane as desired by " << fabs(OldSphereCenter.ScalarProduct(&CirclePlaneNormal)) << "!" << endl;
     2223      OldSphereCenter.ProjectOntoPlane(&CirclePlaneNormal);
     2224    }
     2225    radius = OldSphereCenter.ScalarProduct(&OldSphereCenter);
     2226    if (fabs(radius - CircleRadius) < HULLEPSILON) {
     2227
     2228      // check SearchDirection
     2229      cout << Verbose(2) << "INFO: SearchDirection is " << SearchDirection << "." << endl;
     2230      if (fabs(OldSphereCenter.ScalarProduct(&SearchDirection)) > HULLEPSILON) {  // rotated the wrong way!
     2231        cerr << "ERROR: SearchDirection and RelativeOldSphereCenter are not orthogonal!" << endl;
    18412232      }
    1842       TempNormal.Normalize();
    1843       Restradius = sqrt(RADIUS*RADIUS - Umkreisradius*Umkreisradius);
    1844       TempNormal.Scale(Restradius);
    1845 
    1846       Mittelpunkt.CopyVector(&Umkreismittelpunkt);
    1847       Mittelpunkt.AddVector(&TempNormal);  //this is center of sphere supported by a, b and Candidate
    1848 
    1849       AngleCheck.CopyVector(Chord);
    1850       AngleCheck.Scale(-0.5);
    1851       AngleCheck.SubtractVector(&(b->x));
    1852       AngleCheckReference.CopyVector(&AngleCheck);
    1853       AngleCheckReference.AddVector(Opt_Mittelpunkt);
    1854       AngleCheck.AddVector(&Mittelpunkt);
    1855 
    1856       BallAngle = AngleCheck.Angle(&AngleCheckReference);
    1857 
    1858       d1->ProjectOntoPlane(&AngleCheckReference);
    1859       sign = AngleCheck.ScalarProduct(d1);
    1860       if (fabs(sign) < MYEPSILON)
    1861         sign = 0;
    1862       else
    1863         sign /= fabs(sign); // +1 if in direction of triangle plane, -1 if in other direction...
    1864 
    1865 
    1866       if (Storage[0]< -1.5) { // first Candidate at all
    1867         cout << "Next better candidate is " << *Candidate << " with ";
    1868         Opt_Candidate = Candidate;
    1869         Storage[0] = sign;
    1870         Storage[1] = BallAngle;
    1871         Opt_Mittelpunkt->CopyVector(&Mittelpunkt);
    1872         cout << "Angle is " << Storage[1] << ", Halbraum ist " << Storage[0] << endl;
     2233      // get cell for the starting atom
     2234      if (LC->SetIndexToVector(&CircleCenter)) {
     2235          for(int i=0;i<NDIM;i++) // store indices of this cell
     2236          N[i] = LC->n[i];
     2237        cout << Verbose(2) << "INFO: Center cell is " << N[0] << ", " << N[1] << ", " << N[2] << " with No. " << LC->index << "." << endl;
    18732238      } else {
    1874         /*
    1875          * removed due to change in criterium, now checking angle of ball to old normal.
    1876         //We will now check for non interference, that is if the new candidate would have the Opt_Candidate
    1877         //within the ball.
    1878 
    1879         Distance = Opt_Candidate->x.Distance(&Mittelpunkt);
    1880         //cout << "Opt_Candidate " << Opt_Candidate << " has distance " << Distance << " to Center of Candidate " << endl;
    1881 
    1882 
    1883         if (Distance >RADIUS) { // We have no interference and may now check whether the new point is better.
    1884          */
    1885           //cout << "Atom " << Candidate << " has distance " << Candidate->x.Distance(Opt_Mittelpunkt) << " to Center of Candidate " << endl;
    1886 
    1887         if (((Storage[0] < 0 && fabs(sign - Storage[0]) > CurrentEpsilon))) { //This will give absolute preference to those in "right-hand" quadrants
    1888           //(Candidate->x.Distance(Opt_Mittelpunkt) < RADIUS))    //and those where Candidate would be within old Sphere.
    1889           cout << "Next better candidate is " << *Candidate << " with ";
    1890           Opt_Candidate = Candidate;
    1891           Storage[0] = sign;
    1892           Storage[1] = BallAngle;
    1893           Opt_Mittelpunkt->CopyVector(&Mittelpunkt);
    1894           cout << "Angle is " << Storage[1] << ", Halbraum ist " << Storage[0] << endl;
    1895         } else {
    1896           if ((fabs(sign - Storage[0]) < CurrentEpsilon && sign > 0 && Storage[1] > BallAngle) || (fabs(sign - Storage[0]) < CurrentEpsilon && sign < 0 && Storage[1] < BallAngle)) {
    1897             //Depending on quadrant we prefer higher or lower atom with respect to Triangle normal first.
    1898             cout << "Next better candidate is " << *Candidate << " with ";
    1899             Opt_Candidate = Candidate;
    1900             Storage[0] = sign;
    1901             Storage[1] = BallAngle;
    1902             Opt_Mittelpunkt->CopyVector(&Mittelpunkt);
    1903             cout << "Angle is " << Storage[1] << ", Halbraum ist " << Storage[0] << endl;
     2239        cerr << "ERROR: Vector " << CircleCenter << " is outside of LinkedCell's bounding box." << endl;
     2240        return;
     2241      }
     2242      // then go through the current and all neighbouring cells and check the contained atoms for possible candidates
     2243      cout << Verbose(2) << "LC Intervals:";
     2244      for (int i=0;i<NDIM;i++) {
     2245        Nlower[i] = ((N[i]-1) >= 0) ? N[i]-1 : 0;
     2246        Nupper[i] = ((N[i]+1) < LC->N[i]) ? N[i]+1 : LC->N[i]-1;
     2247        cout << " [" << Nlower[i] << "," << Nupper[i] << "] ";
     2248      }
     2249      cout << endl;
     2250      for (LC->n[0] = Nlower[0]; LC->n[0] <= Nupper[0]; LC->n[0]++)
     2251        for (LC->n[1] = Nlower[1]; LC->n[1] <= Nupper[1]; LC->n[1]++)
     2252          for (LC->n[2] = Nlower[2]; LC->n[2] <= Nupper[2]; LC->n[2]++) {
     2253            List = LC->GetCurrentCell();
     2254            //cout << Verbose(2) << "Current cell is " << LC->n[0] << ", " << LC->n[1] << ", " << LC->n[2] << " with No. " << LC->index << "." << endl;
     2255            if (List != NULL) {
     2256              for (LinkedAtoms::iterator Runner = List->begin(); Runner != List->end(); Runner++) {
     2257                Candidate = (*Runner);
     2258
     2259                // check for three unique points
     2260                if ((Candidate != BaseLine->endpoints[0]->node) && (Candidate != BaseLine->endpoints[1]->node) && (Candidate != ThirdNode)) {
     2261                  cout << Verbose(1) << "INFO: Current Candidate is " << *Candidate << " at " << Candidate->x << "." << endl;
     2262
     2263                  // construct both new centers
     2264                  GetCenterofCircumcircle(&NewSphereCenter, &(BaseLine->endpoints[0]->node->x), &(BaseLine->endpoints[1]->node->x), &(Candidate->x));
     2265                  OtherNewSphereCenter.CopyVector(&NewSphereCenter);
     2266
     2267                  if ((NewNormalVector.MakeNormalVector(&(BaseLine->endpoints[0]->node->x), &(BaseLine->endpoints[1]->node->x), &(Candidate->x))) && (fabs(NewNormalVector.ScalarProduct(&NewNormalVector)) > HULLEPSILON)) {
     2268                    helper.CopyVector(&NewNormalVector);
     2269                    cout << Verbose(2) << "INFO: NewNormalVector is " << NewNormalVector << "." << endl;
     2270                    radius = BaseLine->endpoints[0]->node->x.DistanceSquared(&NewSphereCenter);
     2271                    if (radius < RADIUS*RADIUS) {
     2272                      helper.Scale(sqrt(RADIUS*RADIUS - radius));
     2273                      cout << Verbose(3) << "INFO: Distance of NewCircleCenter to NewSphereCenter is " << helper.Norm() << "." << endl;
     2274                      NewSphereCenter.AddVector(&helper);
     2275                      NewSphereCenter.SubtractVector(&CircleCenter);
     2276                      cout << Verbose(2) << "INFO: NewSphereCenter is at " << NewSphereCenter << "." << endl;
     2277
     2278                      helper.Scale(-1.); // OtherNewSphereCenter is created by the same vector just in the other direction
     2279                      OtherNewSphereCenter.AddVector(&helper);
     2280                      OtherNewSphereCenter.SubtractVector(&CircleCenter);
     2281                      cout << Verbose(2) << "INFO: OtherNewSphereCenter is at " << OtherNewSphereCenter << "." << endl;
     2282
     2283                      // check both possible centers
     2284                      alpha = GetPathLengthonCircumCircle(CircleCenter, CirclePlaneNormal, CircleRadius, NewSphereCenter, OldSphereCenter, NormalVector, SearchDirection);
     2285                      Otheralpha = GetPathLengthonCircumCircle(CircleCenter, CirclePlaneNormal, CircleRadius, OtherNewSphereCenter, OldSphereCenter, NormalVector, SearchDirection);
     2286                      alpha = min(alpha, Otheralpha);
     2287                      if (*ShortestAngle > alpha) {
     2288                          OptCandidate = Candidate;
     2289                          *ShortestAngle = alpha;
     2290                          if (alpha != Otheralpha)
     2291                            OptCandidateCenter->CopyVector(&NewSphereCenter);
     2292                          else
     2293                            OptCandidateCenter->CopyVector(&OtherNewSphereCenter);
     2294                          cout << Verbose(1) << "ACCEPT: We have found a better candidate: " << *OptCandidate << " with " << alpha << " and circumsphere's center at " << *OptCandidateCenter << "." << endl;
     2295                      } else {
     2296                        if (OptCandidate != NULL)
     2297                          cout << Verbose(1) << "REJECT: Old candidate: " << *OptCandidate << " is better than " << alpha << " with " << *ShortestAngle << "." << endl;
     2298                        else
     2299                          cout << Verbose(2) << "REJECT: Candidate " << *Candidate << " with " << alpha << " was rejected." << endl;
     2300                      }
     2301
     2302                    } else {
     2303                      cout << Verbose(1) << "REJECT: NewSphereCenter " << NewSphereCenter << " is too far away: " << radius << "." << endl;
     2304                    }
     2305                  } else {
     2306                    cout << Verbose(1) << "REJECT: Three points from " << *BaseLine << " and Candidate " << *Candidate << " are linear-dependent." << endl;
     2307                  }
     2308                } else {
     2309                  if (ThirdNode != NULL)
     2310                    cout << Verbose(1) << "REJECT: Base triangle " << *BaseLine << " and " << *ThirdNode << " contains Candidate " << *Candidate << "." << endl;
     2311                  else
     2312                    cout << Verbose(1) << "REJECT: Base triangle " << *BaseLine << " contains Candidate " << *Candidate << "." << endl;
     2313                }
     2314              }
     2315            }
    19042316          }
    1905         }
    1906       }
    1907 /*
    1908                * This is for checking point-angle and presence of Candidates in Ball, currently we are checking the ball Angle.
    1909                *
    1910                 else
    1911                 {
    1912                   if (sign>0 && BallAngle>0 && Storage[0]<0)
    1913                     {
    1914                       cout << "Next better candidate is " << *Candidate << " with ";
    1915                       Opt_Candidate = Candidate;
    1916                       Storage[0] = sign;
    1917                       Storage[1] = BallAngle;
    1918                       Opt_Mittelpunkt->CopyVector(&Mittelpunkt);
    1919                       cout << "Angle is " << Storage[1] << ", Halbraum ist "
    1920                       << Storage[0] << endl;
    1921 
    1922 //Debugging purposes only
    1923                       cout << "Umkreismittelpunkt has coordinates" << Umkreismittelpunkt.x[0] << " "<< Umkreismittelpunkt.x[1] <<" "<<Umkreismittelpunkt.x[2] << endl;
    1924                       cout << "Candidate has coordinates" << Candidate->x.x[0]<< " " << Candidate->x.x[1] << " " << Candidate->x.x[2] << endl;
    1925                       cout << "a has coordinates" << a->x.x[0]<< " " << a->x.x[1] << " " << a->x.x[2] << endl;
    1926                       cout << "b has coordinates" << b->x.x[0]<< " " << b->x.x[1] << " " << b->x.x[2] << endl;
    1927                       cout << "Mittelpunkt has coordinates" << Mittelpunkt.x[0] << " " << Mittelpunkt.x[1]<< " "  <<Mittelpunkt.x[2] << endl;
    1928                       cout << "Umkreisradius ist " << Umkreisradius << endl;
    1929                       cout << "Restradius ist " << Restradius << endl;
    1930                       cout << "TempNormal has coordinates " << TempNormal.x[0] << " " << TempNormal.x[1] << " " << TempNormal.x[2] << " " << endl;
    1931                       cout << "OldNormal has coordinates " << OldNormal->x[0] << " " << OldNormal->x[1] << " " << OldNormal->x[2] << " " << endl;
    1932                       cout << "Dist a to UmkreisMittelpunkt " << a->x.Distance(&Umkreismittelpunkt) << endl;
    1933                       cout << "Dist b to UmkreisMittelpunkt " << b->x.Distance(&Umkreismittelpunkt) << endl;
    1934                       cout << "Dist Candidate to UmkreisMittelpunkt " << Candidate->x.Distance(&Umkreismittelpunkt) << endl;
    1935                       cout << "Dist a to Mittelpunkt " << a->x.Distance(&Mittelpunkt) << endl;
    1936                       cout << "Dist b to Mittelpunkt " << b->x.Distance(&Mittelpunkt) << endl;
    1937                       cout << "Dist Candidate to Mittelpunkt " << Candidate->x.Distance(&Mittelpunkt) << endl;
    1938 
    1939 
    1940 
    1941                     }
    1942                   else
    1943                     {
    1944                       if (DEBUG)
    1945                         cout << "Looses to better candidate" << endl;
    1946                     }
    1947                 }
    1948                 */
    19492317    } else {
    1950       if (DEBUG) {
    1951         cout << "Doesn't satisfy requirements for circumscribing circle" << endl;
    1952       }
     2318      cerr << Verbose(1) << "ERROR: The projected center of the old sphere has radius " << radius << " instead of " << CircleRadius << "." << endl;
    19532319    }
    19542320  } else {
    1955     if (DEBUG) {
    1956       cout << "identisch mit Ursprungslinie" << endl;
    1957     }
    1958   }
    1959 
    1960   if (RecursionLevel < 9) { // Five is the recursion level threshold.
    1961     for (int i = 0; i < mol->NumberOfBondsPerAtom[Candidate->nr]; i++) { // go through all bond
    1962       Walker = mol->ListOfBondsPerAtom[Candidate->nr][i]->GetOtherAtom(Candidate);
    1963       if (Walker == Parent) { // don't go back the same bond
    1964         continue;
    1965       } else {
    1966         Find_next_suitable_point(a, b, Walker, Candidate, RecursionLevel+1, Chord, d1, OldNormal, Opt_Candidate, Opt_Mittelpunkt, Storage, RADIUS, mol); //call function again
    1967       }
    1968     }
    1969   }
    1970 };
    1971 
    1972 /** This function finds a triangle to a line, adjacent to an existing one.
    1973  * @param out   output stream for debugging
    1974  * @param tecplot output stream for writing found triangles in TecPlot format
    1975  * @param mol molecule structure with all atoms and bonds
    1976  * @param Line current baseline to search from
    1977  * @param T current triangle which \a Line is edge of
    1978  * @param RADIUS radius of the rolling ball
    1979  * @param N number of found triangles
    1980  * @param *filename filename base for intermediate envelopes
    1981  */
    1982 bool Tesselation::Find_next_suitable_triangle(ofstream *out, ofstream *tecplot,
    1983     molecule* mol, BoundaryLineSet &Line, BoundaryTriangleSet &T,
    1984     const double& RADIUS, int N, const char *tempbasename)
    1985 {
    1986   cout << Verbose(1) << "Begin of Find_next_suitable_triangle\n";
    1987   Vector direction1;
    1988   Vector helper;
    1989   Vector Chord;
    1990   ofstream *tempstream = NULL;
    1991   char NumberName[255];
    1992   double tmp;
    1993   //atom* Walker;
    1994   atom* OldThirdPoint;
    1995 
    1996   double Storage[3];
    1997   Storage[0] = -2.; // This direction is either +1 or -1 one, so any result will take precedence over initial values
    1998   Storage[1] = -2.; // This is also lower then any value produced by an eligible atom, which are all positive
    1999   Storage[2] = 9999999.;
    2000   atom* Opt_Candidate = NULL;
    2001   Vector Opt_Mittelpunkt;
    2002 
    2003   cout << Verbose(1) << "Current baseline is " << Line << " of triangle " << T << "." << endl;
    2004 
    2005   helper.CopyVector(&(Line.endpoints[0]->node->x));
    2006   for (int i = 0; i < 3; i++) {
    2007     if (T.endpoints[i]->node->nr != Line.endpoints[0]->node->nr && T.endpoints[i]->node->nr != Line.endpoints[1]->node->nr) {
    2008       OldThirdPoint = T.endpoints[i]->node;
    2009       helper.SubtractVector(&T.endpoints[i]->node->x);
    2010       break;
    2011     }
    2012   }
    2013 
    2014   direction1.CopyVector(&Line.endpoints[0]->node->x);
    2015   direction1.SubtractVector(&Line.endpoints[1]->node->x);
    2016   direction1.VectorProduct(&(T.NormalVector));
    2017 
    2018   if (direction1.ScalarProduct(&helper) < 0) {
    2019     direction1.Scale(-1);
    2020   }
    2021   cout << Verbose(2) << "Looking in direction " << direction1 << " for candidates.\n";
    2022 
    2023   Chord.CopyVector(&(Line.endpoints[0]->node->x)); // bring into calling function
    2024   Chord.SubtractVector(&(Line.endpoints[1]->node->x));
    2025   cout << Verbose(2) << "Baseline vector is " << Chord << ".\n";
    2026 
    2027 
    2028   Vector Umkreismittelpunkt, a, b, c;
    2029   double alpha, beta, gamma;
    2030   a.CopyVector(&(T.endpoints[0]->node->x));
    2031   b.CopyVector(&(T.endpoints[1]->node->x));
    2032   c.CopyVector(&(T.endpoints[2]->node->x));
    2033   a.SubtractVector(&(T.endpoints[1]->node->x));
    2034   b.SubtractVector(&(T.endpoints[2]->node->x));
    2035   c.SubtractVector(&(T.endpoints[0]->node->x));
    2036 
    2037   alpha = M_PI - a.Angle(&c);
    2038   beta = M_PI - b.Angle(&a);
    2039   gamma = M_PI - c.Angle(&b);
    2040   if (fabs(M_PI - alpha - beta - gamma) > MYEPSILON)
    2041     cerr << Verbose(0) << "WARNING: sum of angles for candidate triangle " << (alpha + beta + gamma)/M_PI*180. << " != 180.\n";
    2042 
    2043   Umkreismittelpunkt.Zero();
    2044   helper.CopyVector(&T.endpoints[0]->node->x);
    2045   helper.Scale(sin(2.*alpha));
    2046   Umkreismittelpunkt.AddVector(&helper);
    2047   helper.CopyVector(&T.endpoints[1]->node->x);
    2048   helper.Scale(sin(2.*beta));
    2049   Umkreismittelpunkt.AddVector(&helper);
    2050   helper.CopyVector(&T.endpoints[2]->node->x);
    2051   helper.Scale(sin(2.*gamma));
    2052   Umkreismittelpunkt.AddVector(&helper);
    2053   //Umkreismittelpunkt = (T.endpoints[0]->node->x) * sin(2.*alpha) + T.endpoints[1]->node->x * sin(2.*beta) + (T.endpoints[2]->node->x) * sin(2.*gamma) ;
    2054   //cout << "UmkreisMittelpunkt is " << Umkreismittelpunkt.x[0] << " "<< Umkreismittelpunkt.x[1] << " "<< Umkreismittelpunkt.x[2] << " "<< endl;
    2055   Umkreismittelpunkt.Scale(1/(sin(2*alpha) + sin(2*beta) + sin(2*gamma)));
    2056   //cout << "UmkreisMittelpunkt is " << Umkreismittelpunkt.x[0] << " "<< Umkreismittelpunkt.x[1] << " "<< Umkreismittelpunkt.x[2] << " "<< endl;
    2057   cout << " We look over line " << Line << " in direction " << direction1.x[0] << " " << direction1.x[1] << " " << direction1.x[2] << " " << endl;
    2058   cout << " Old Normal is " <<  (T.NormalVector.x)[0] << " " << T.NormalVector.x[1] << " " << (T.NormalVector.x)[2] << " " << endl;
    2059 
    2060   cout << Verbose(2) << "Base triangle has sides " << a << ", " << b << ", " << c << " with angles " << alpha/M_PI*180. << ", " << beta/M_PI*180. << ", " << gamma/M_PI*180. << "." << endl;
    2061   cout << Verbose(2) << "Center of circumference is " << Umkreismittelpunkt << "." << endl;
    2062   if (DEBUG)
    2063     cout << Verbose(3) << "Check of relative endpoints (same distance, equally spreaded): "<< endl;
    2064   tmp = 0;
    2065   for (int i=0;i<NDIM;i++) {
    2066     helper.CopyVector(&T.endpoints[i]->node->x);
    2067     helper.SubtractVector(&Umkreismittelpunkt);
    2068     if (DEBUG)
    2069       cout << Verbose(3) << "Endpoint[" << i << "]: " << helper << " with length " << helper.Norm() << "." << endl;
    2070     if (tmp == 0) // set on first time for comparison against next ones
    2071       tmp = helper.Norm();
    2072     if (fabs(helper.Norm() - tmp) > MYEPSILON)
    2073       cerr << Verbose(1) << "WARNING: center of circumference is wrong!" << endl;
    2074   }
    2075 
    2076   cout << Verbose(1) << "Looking for third point candidates for triangle ... " << endl;
    2077 
    2078   Find_next_suitable_point_via_Angle_of_Sphere(Line.endpoints[0]->node, Line.endpoints[1]->node, OldThirdPoint, Line.endpoints[0]->node, Line.endpoints[1]->node, 0, &Chord, &direction1, &(T.NormalVector), Umkreismittelpunkt, Opt_Candidate, Storage, RADIUS, mol);
    2079   Find_next_suitable_point_via_Angle_of_Sphere(Line.endpoints[0]->node, Line.endpoints[1]->node, OldThirdPoint, Line.endpoints[1]->node, Line.endpoints[0]->node, 0, &Chord, &direction1, &(T.NormalVector), Umkreismittelpunkt, Opt_Candidate, Storage, RADIUS, mol);
    2080   if (Opt_Candidate == NULL) {
    2081     cerr << "WARNING: Could not find a suitable candidate." << endl;
    2082     return false;
    2083   }
    2084   cout << Verbose(1) << " Optimal candidate is " << *Opt_Candidate << endl;
    2085 
    2086   // check whether all edges of the new triangle still have space for one more triangle (i.e. TriangleCount <2)
    2087   bool flag = CheckPresenceOfTriangle(out, Opt_Candidate, Line.endpoints[0]->node, Line.endpoints[1]->node);
    2088 
    2089   if (flag) { // if so, add
    2090     AddTrianglePoint(Opt_Candidate, 0);
    2091     AddTrianglePoint(Line.endpoints[0]->node, 1);
    2092     AddTrianglePoint(Line.endpoints[1]->node, 2);
    2093 
    2094     AddTriangleLine(TPS[0], TPS[1], 0);
    2095     AddTriangleLine(TPS[0], TPS[2], 1);
    2096     AddTriangleLine(TPS[1], TPS[2], 2);
    2097 
    2098     BTS = new class BoundaryTriangleSet(BLS, TrianglesOnBoundaryCount);
    2099     AddTriangleToLines();
    2100 
    2101     BTS->GetNormalVector(BTS->NormalVector);
    2102 
    2103     if ((BTS->NormalVector.ScalarProduct(&(T.NormalVector)) < 0 && Storage[0] > 0)  || (BTS->NormalVector.ScalarProduct(&(T.NormalVector)) > 0 && Storage[0] < 0) || (fabs(Storage[0]) < MYEPSILON && Storage[1]*BTS->NormalVector.ScalarProduct(&direction1) < 0) ) {
    2104       BTS->NormalVector.Scale(-1);
    2105     };
    2106     cout << Verbose(1) << "New triangle with " << *BTS << " and normal vector " << BTS->NormalVector << " for this triangle ... " << endl;
    2107     cout << Verbose(1) << "We have "<< TrianglesOnBoundaryCount << " for line " << Line << "." << endl;
    2108   } else { // else, yell and do nothing
    2109     cout << Verbose(1) << "This triangle consisting of ";
    2110     cout << *Opt_Candidate << ", ";
    2111     cout << *Line.endpoints[0]->node << " and ";
    2112     cout << *Line.endpoints[1]->node << " ";
    2113     cout << "is invalid!" << endl;
    2114     return false;
    2115   }
    2116 
    2117   if ((TrianglesOnBoundaryCount % 10) == 0) {
    2118     sprintf(NumberName, "-%d", TriangleFilesWritten);
    2119     if (DoTecplotOutput) {
    2120       string NameofTempFile(tempbasename);
    2121       NameofTempFile.append(NumberName);
    2122       NameofTempFile.append(TecplotSuffix);
    2123       cout << Verbose(1) << "Writing temporary non convex hull to file " << NameofTempFile << ".\n";
    2124       tempstream = new ofstream(NameofTempFile.c_str(), ios::trunc);
    2125       write_tecplot_file(out, tempstream, this, mol, TriangleFilesWritten);
    2126       tempstream->close();
    2127       tempstream->flush();
    2128       delete(tempstream);
    2129     }
    2130 
    2131     if (DoRaster3DOutput) {
    2132       string NameofTempFile(tempbasename);
    2133       NameofTempFile.append(NumberName);
    2134       NameofTempFile.append(Raster3DSuffix);
    2135       cout << Verbose(1) << "Writing temporary non convex hull to file " << NameofTempFile << ".\n";
    2136       tempstream = new ofstream(NameofTempFile.c_str(), ios::trunc);
    2137       write_raster3d_file(out, tempstream, this, mol);
    2138       tempstream->close();
    2139       tempstream->flush();
    2140       delete(tempstream);
    2141     }
    2142     if (DoTecplotOutput || DoRaster3DOutput)
    2143       TriangleFilesWritten++;
    2144   }
    2145 
    2146   cout << Verbose(1) << "End of Find_next_suitable_triangle\n";
    2147   return true;
     2321    if (ThirdNode != NULL)
     2322      cout << Verbose(1) << "Circumcircle for base line " << *BaseLine << " and third node " << *ThirdNode << " is too big!" << endl;
     2323    else
     2324      cout << Verbose(1) << "Circumcircle for base line " << *BaseLine << " is too big!" << endl;
     2325  }
     2326
     2327
     2328  cout << Verbose(1) << "End of Find_third_point_for_Tesselation" << endl;
    21482329};
    21492330
     
    21942375
    21952376
    2196 void Find_second_point_for_Tesselation(atom* a, atom* Candidate, atom* Parent,
    2197     int RecursionLevel, Vector Oben, atom*& Opt_Candidate, double Storage[3],
    2198     molecule* mol, double RADIUS)
    2199 {
    2200   cout << Verbose(2) << "Begin of Find_second_point_for_Tesselation, recursive level " << RecursionLevel << endl;
    2201   int i;
     2377/** Finds the second point of starting triangle.
     2378 * \param *a first atom
     2379 * \param *Candidate pointer to candidate atom on return
     2380 * \param Oben vector indicating the outside
     2381 * \param Opt_Candidate reference to recommended candidate on return
     2382 * \param Storage[3] array storing angles and other candidate information
     2383 * \param RADIUS radius of virtual sphere
     2384 * \param *LC LinkedCell structure with neighbouring atoms
     2385 */
     2386void Find_second_point_for_Tesselation(atom* a, atom* Candidate, Vector Oben, atom*& Opt_Candidate, double Storage[3], double RADIUS, LinkedCell *LC)
     2387{
     2388  cout << Verbose(2) << "Begin of Find_second_point_for_Tesselation" << endl;
    22022389  Vector AngleCheck;
    2203   atom* Walker;
    22042390  double norm = -1., angle;
    2205 
    2206   // check if we only have one unique point yet ...
    2207   if (a != Candidate) {
    2208     cout << Verbose(3) << "Current candidate is " << *Candidate << ": ";
    2209     AngleCheck.CopyVector(&(Candidate->x));
    2210     AngleCheck.SubtractVector(&(a->x));
    2211     norm = AngleCheck.Norm();
    2212     // second point shall have smallest angle with respect to Oben vector
    2213     if (norm < RADIUS) {
    2214       angle = AngleCheck.Angle(&Oben);
    2215       if (angle < Storage[0]) {
    2216         //cout << Verbose(1) << "Old values of Storage: %lf %lf \n", Storage[0], Storage[1]);
    2217         cout << "Is a better candidate with distance " << norm << " and " << angle << ".\n";
    2218         Opt_Candidate = Candidate;
    2219         Storage[0] = AngleCheck.Angle(&Oben);
    2220         //cout << Verbose(1) << "Changing something in Storage: %lf %lf. \n", Storage[0], Storage[2]);
    2221       } else {
    2222         cout << "Looses with angle " << angle << " to a better candidate " << *Opt_Candidate << endl;
     2391  LinkedAtoms *List = NULL;
     2392  int N[NDIM], Nlower[NDIM], Nupper[NDIM];
     2393
     2394  if (LC->SetIndexToAtom(a)) {  // get cell for the starting atom
     2395    for(int i=0;i<NDIM;i++) // store indices of this cell
     2396      N[i] = LC->n[i];
     2397  } else {
     2398    cerr << "ERROR: Atom " << *a << " is not found in cell " << LC->index << "." << endl;
     2399    return;
     2400  }
     2401  // then go through the current and all neighbouring cells and check the contained atoms for possible candidates
     2402  cout << Verbose(2) << "LC Intervals:";
     2403  for (int i=0;i<NDIM;i++) {
     2404    Nlower[i] = ((N[i]-1) >= 0) ? N[i]-1 : 0;
     2405    Nupper[i] = ((N[i]+1) < LC->N[i]) ? N[i]+1 : LC->N[i]-1;
     2406    cout << " [" << Nlower[i] << "," << Nupper[i] << "] ";
     2407  }
     2408  cout << endl;
     2409  for (LC->n[0] = Nlower[0]; LC->n[0] <= Nupper[0]; LC->n[0]++)
     2410    for (LC->n[1] = Nlower[1]; LC->n[1] <= Nupper[1]; LC->n[1]++)
     2411      for (LC->n[2] = Nlower[2]; LC->n[2] <= Nupper[2]; LC->n[2]++) {
     2412        List = LC->GetCurrentCell();
     2413        //cout << Verbose(2) << "Current cell is " << LC->n[0] << ", " << LC->n[1] << ", " << LC->n[2] << " with No. " << LC->index << "." << endl;
     2414        if (List != NULL) {
     2415          for (LinkedAtoms::iterator Runner = List->begin(); Runner != List->end(); Runner++) {
     2416            Candidate = (*Runner);
     2417                // check if we only have one unique point yet ...
     2418                if (a != Candidate) {
     2419      cout << Verbose(3) << "Current candidate is " << *Candidate << ": ";
     2420      AngleCheck.CopyVector(&(Candidate->x));
     2421      AngleCheck.SubtractVector(&(a->x));
     2422      norm = AngleCheck.Norm();
     2423              // second point shall have smallest angle with respect to Oben vector
     2424              if (norm < RADIUS) {
     2425                angle = AngleCheck.Angle(&Oben);
     2426                if (angle < Storage[0]) {
     2427                  //cout << Verbose(1) << "Old values of Storage: %lf %lf \n", Storage[0], Storage[1]);
     2428                  cout << "Is a better candidate with distance " << norm << " and " << angle << ".\n";
     2429                  Opt_Candidate = Candidate;
     2430                  Storage[0] = AngleCheck.Angle(&Oben);
     2431                  //cout << Verbose(1) << "Changing something in Storage: %lf %lf. \n", Storage[0], Storage[2]);
     2432                } else {
     2433                  cout << "Looses with angle " << angle << " to a better candidate " << *Opt_Candidate << endl;
     2434                }
     2435              } else {
     2436                cout << "Refused due to Radius " << norm << endl;
     2437              }
     2438            }
     2439          }
     2440        }
    22232441      }
    2224     } else {
    2225       cout << "Refused due to Radius " << norm << endl;
    2226     }
    2227   }
    2228 
    2229   // if not recursed to deeply, look at all its bonds
    2230   if (RecursionLevel < 7) {
    2231     for (i = 0; i < mol->NumberOfBondsPerAtom[Candidate->nr]; i++) {
    2232       Walker = mol->ListOfBondsPerAtom[Candidate->nr][i]->GetOtherAtom(Candidate);
    2233       if (Walker == Parent) // don't go back along the bond we came from
    2234         continue;
    2235       else
    2236         Find_second_point_for_Tesselation(a, Walker, Candidate, RecursionLevel + 1, Oben, Opt_Candidate, Storage, mol, RADIUS);
    2237     }
    2238   }
    2239   cout << Verbose(2) << "End of Find_second_point_for_Tesselation, recursive level " << RecursionLevel << endl;
     2442  cout << Verbose(2) << "End of Find_second_point_for_Tesselation" << endl;
    22402443};
    22412444
    2242 void Tesselation::Find_starting_triangle(molecule* mol, const double RADIUS)
     2445/** Finds the starting triangle for find_non_convex_border().
     2446 * Looks at the outermost atom per axis, then Find_second_point_for_Tesselation()
     2447 * for the second and Find_next_suitable_point_via_Angle_of_Sphere() for the third
     2448 * point are called.
     2449 * \param RADIUS radius of virtual rolling sphere
     2450 * \param *LC LinkedCell structure with neighbouring atoms
     2451 */
     2452void Tesselation::Find_starting_triangle(ofstream *out, molecule *mol, const double RADIUS, LinkedCell *LC)
    22432453{
    22442454  cout << Verbose(1) << "Begin of Find_starting_triangle\n";
    22452455  int i = 0;
    2246   atom* Walker;
     2456  LinkedAtoms *List = NULL;
    22472457  atom* FirstPoint;
    22482458  atom* SecondPoint;
    2249   atom* max_index[NDIM];
     2459  atom* MaxAtom[NDIM];
    22502460  double max_coordinate[NDIM];
    22512461  Vector Oben;
    22522462  Vector helper;
    22532463  Vector Chord;
    2254   Vector CenterOfFirstLine;
     2464  Vector SearchDirection;
     2465  Vector OptCandidateCenter;
    22552466
    22562467  Oben.Zero();
    22572468
    22582469  for (i = 0; i < 3; i++) {
    2259     max_index[i] = NULL;
     2470    MaxAtom[i] = NULL;
    22602471    max_coordinate[i] = -1;
    22612472  }
    2262   cout << Verbose(2) << "Molecule mol is there and has " << mol->AtomCount << " Atoms \n";
    22632473
    22642474  // 1. searching topmost atom with respect to each axis
    2265   Walker = mol->start;
    2266   while (Walker->next != mol->end) {
    2267     Walker = Walker->next;
    2268     for (i = 0; i < 3; i++) {
    2269       if (Walker->x.x[i] > max_coordinate[i]) {
    2270         max_coordinate[i] = Walker->x.x[i];
    2271         max_index[i] = Walker;
     2475  for (int i=0;i<NDIM;i++) { // each axis
     2476    LC->n[i] = LC->N[i]-1; // current axis is topmost cell
     2477    for (LC->n[(i+1)%NDIM]=0;LC->n[(i+1)%NDIM]<LC->N[(i+1)%NDIM];LC->n[(i+1)%NDIM]++)
     2478      for (LC->n[(i+2)%NDIM]=0;LC->n[(i+2)%NDIM]<LC->N[(i+2)%NDIM];LC->n[(i+2)%NDIM]++) {
     2479        List = LC->GetCurrentCell();
     2480        //cout << Verbose(2) << "Current cell is " << LC->n[0] << ", " << LC->n[1] << ", " << LC->n[2] << " with No. " << LC->index << "." << endl;
     2481        if (List != NULL) {
     2482          for (LinkedAtoms::iterator Runner = List->begin();Runner != List->end();Runner++) {
     2483            cout << Verbose(2) << "Current atom is " << *(*Runner) << "." << endl;
     2484            if ((*Runner)->x.x[i] > max_coordinate[i]) {
     2485              max_coordinate[i] = (*Runner)->x.x[i];
     2486              MaxAtom[i] = (*Runner);
     2487            }
     2488          }
     2489        } else {
     2490          cerr << "ERROR: The current cell " << LC->n[0] << "," << LC->n[1] << "," << LC->n[2] << " is invalid!" << endl;
     2491        }
    22722492      }
    2273     }
    22742493  }
    22752494
    22762495  cout << Verbose(2) << "Found maximum coordinates: ";
    22772496  for (int i=0;i<NDIM;i++)
    2278     cout << i << ": " << *max_index[i] << "\t";
     2497    cout << i << ": " << *MaxAtom[i] << "\t";
    22792498  cout << endl;
    2280   //Koennen dies fuer alle Richtungen, legen hier erstmal Richtung auf k=0
    2281   const int k = 1;
     2499  const int k = 1;    // arbitrary choice
    22822500  Oben.x[k] = 1.;
    2283   FirstPoint = max_index[k];
    2284 
    2285   cout << Verbose(1) << "Coordinates of start atom " << *FirstPoint << " at " << FirstPoint->x << " with " << mol->NumberOfBondsPerAtom[FirstPoint->nr] << " bonds." << endl;
    2286   double Storage[3];
     2501  FirstPoint = MaxAtom[k];
     2502  cout << Verbose(1) << "Coordinates of start atom " << *FirstPoint << " at " << FirstPoint->x << "." << endl;
     2503
     2504  // add first point
     2505  AddTrianglePoint(FirstPoint, 0);
     2506
     2507  double ShortestAngle;
    22872508  atom* Opt_Candidate = NULL;
    2288   Storage[0] = 999999.; // This will contain the angle, which will be always positive (when looking for second point), when looking for third point this will be the quadrant.
    2289   Storage[1] = 999999.; // This will be an angle looking for the third point.
    2290   Storage[2] = 999999.;
    2291 
    2292   Find_second_point_for_Tesselation(FirstPoint, FirstPoint, FirstPoint, 0, Oben, Opt_Candidate, Storage, mol, RADIUS); // we give same point as next candidate as its bonds are looked into in find_second_...
     2509  ShortestAngle = 999999.; // This will contain the angle, which will be always positive (when looking for second point), when looking for third point this will be the quadrant.
     2510
     2511  Find_second_point_for_Tesselation(FirstPoint, NULL, Oben, Opt_Candidate, &ShortestAngle, RADIUS, LC); // we give same point as next candidate as its bonds are looked into in find_second_...
    22932512  SecondPoint = Opt_Candidate;
    22942513  cout << Verbose(1) << "Found second point is " << *SecondPoint << " at " << SecondPoint->x << ".\n";
     2514
     2515  // add second point and first baseline
     2516  AddTrianglePoint(SecondPoint, 1);
     2517  AddTriangleLine(TPS[0], TPS[1], 0);
    22952518
    22962519  helper.CopyVector(&(FirstPoint->x));
     
    23002523  Oben.Normalize();
    23012524  helper.VectorProduct(&Oben);
    2302   Storage[0] = -2.; // This will indicate the quadrant.
    2303   Storage[1] = 9999999.; // This will be an angle looking for the third point.
    2304   Storage[2] = 9999999.;
     2525  ShortestAngle = 2.*M_PI; // This will indicate the quadrant.
    23052526
    23062527  Chord.CopyVector(&(FirstPoint->x)); // bring into calling function
    23072528  Chord.SubtractVector(&(SecondPoint->x));
     2529  double radius = Chord.ScalarProduct(&Chord);
     2530  double CircleRadius = sqrt(RADIUS*RADIUS - radius/4.);
     2531  helper.CopyVector(&Oben);
     2532  helper.Scale(CircleRadius);
    23082533  // Now, oben and helper are two orthonormalized vectors in the plane defined by Chord (not normalized)
    23092534
     
    23112536  // look in one direction of baseline for initial candidate
    23122537  Opt_Candidate = NULL;
    2313   CenterOfFirstLine.CopyVector(&Chord);
    2314   CenterOfFirstLine.Scale(0.5);
    2315   CenterOfFirstLine.AddVector(&(SecondPoint->x));
    2316 
    2317   cout << Verbose(1) << "Looking for third point candidates from " << *FirstPoint << " onward ...\n";
    2318   Find_next_suitable_point_via_Angle_of_Sphere(FirstPoint, SecondPoint, SecondPoint, SecondPoint, FirstPoint, 0, &Chord, &helper, &Oben, CenterOfFirstLine,  Opt_Candidate, Storage, RADIUS, mol);
    2319   // look in other direction of baseline for possible better candidate
    2320   cout << Verbose(1) << "Looking for third point candidates from " << *SecondPoint << " onward ...\n";
    2321   Find_next_suitable_point_via_Angle_of_Sphere(FirstPoint, SecondPoint, SecondPoint, FirstPoint, SecondPoint, 0, &Chord, &helper, &Oben, CenterOfFirstLine, Opt_Candidate, Storage, RADIUS, mol);
     2538  SearchDirection.MakeNormalVector(&Chord, &Oben);  // whether we look "left" first or "right" first is not important ...
     2539
     2540  cout << Verbose(1) << "Looking for third point candidates ...\n";
     2541  Find_third_point_for_Tesselation(Oben, SearchDirection, helper, BLS[0], NULL, Opt_Candidate, &OptCandidateCenter, &ShortestAngle, RADIUS, LC);
    23222542  cout << Verbose(1) << "Third Point is " << *Opt_Candidate << endl;
    23232543
     2544  // add third point
     2545  AddTrianglePoint(Opt_Candidate, 2);
     2546
    23242547  // FOUND Starting Triangle: FirstPoint, SecondPoint, Opt_Candidate
    23252548
    2326   // Finally, we only have to add the found points
    2327   AddTrianglePoint(FirstPoint, 0);
    2328   AddTrianglePoint(SecondPoint, 1);
    2329   AddTrianglePoint(Opt_Candidate, 2);
    2330   // ... and respective lines
    2331   AddTriangleLine(TPS[0], TPS[1], 0);
     2549  // Finally, we only have to add the found further lines
    23322550  AddTriangleLine(TPS[1], TPS[2], 1);
    23332551  AddTriangleLine(TPS[0], TPS[2], 2);
     
    23362554  AddTriangleToLines();
    23372555  // ... and calculate its normal vector (with correct orientation)
    2338   Oben.Scale(-1.);
    2339   BTS->GetNormalVector(Oben);
     2556  OptCandidateCenter.Scale(-1.);
     2557  cout << Verbose(2) << "Oben is currently " << OptCandidateCenter << "." << endl;
     2558  BTS->GetNormalVector(OptCandidateCenter);
    23402559  cout << Verbose(0) << "==> The found starting triangle consists of " << *FirstPoint << ", " << *SecondPoint << " and " << *Opt_Candidate << " with normal vector " << BTS->NormalVector << ".\n";
     2560  cout << Verbose(2) << "Projection is " << BTS->NormalVector.Projection(&Oben) << "." << endl;
    23412561  cout << Verbose(1) << "End of Find_starting_triangle\n";
    23422562};
    23432563
    2344 void Find_non_convex_border(ofstream *out, ofstream *tecplot, molecule* mol, const char *filename, const double RADIUS)
     2564/** This function finds a triangle to a line, adjacent to an existing one.
     2565 * @param out output stream for debugging
     2566 * @param *mol molecule with Atom's and Bond's
     2567 * @param Line current baseline to search from
     2568 * @param T current triangle which \a Line is edge of
     2569 * @param RADIUS radius of the rolling ball
     2570 * @param N number of found triangles
     2571 * @param *filename filename base for intermediate envelopes
     2572 * @param *LC LinkedCell structure with neighbouring atoms
     2573 */
     2574bool Tesselation::Find_next_suitable_triangle(ofstream *out,
     2575    molecule *mol, BoundaryLineSet &Line, BoundaryTriangleSet &T,
     2576    const double& RADIUS, int N, const char *tempbasename, LinkedCell *LC)
     2577{
     2578  cout << Verbose(1) << "Begin of Find_next_suitable_triangle\n";
     2579  ofstream *tempstream = NULL;
     2580  char NumberName[255];
     2581
     2582  atom* Opt_Candidate = NULL;
     2583  Vector OptCandidateCenter;
     2584
     2585  Vector CircleCenter;
     2586  Vector CirclePlaneNormal;
     2587  Vector OldSphereCenter;
     2588  Vector SearchDirection;
     2589  Vector helper;
     2590  atom *ThirdNode = NULL;
     2591  double ShortestAngle = 2.*M_PI; // This will indicate the quadrant.
     2592  double radius, CircleRadius;
     2593
     2594  cout << Verbose(1) << "Current baseline is " << Line << " of triangle " << T << "." << endl;
     2595  for (int i=0;i<3;i++)
     2596    if ((T.endpoints[i]->node != Line.endpoints[0]->node) && (T.endpoints[i]->node != Line.endpoints[1]->node))
     2597      ThirdNode = T.endpoints[i]->node;
     2598
     2599  // construct center of circle
     2600  CircleCenter.CopyVector(&Line.endpoints[0]->node->x);
     2601  CircleCenter.AddVector(&Line.endpoints[1]->node->x);
     2602  CircleCenter.Scale(0.5);
     2603
     2604  // construct normal vector of circle
     2605  CirclePlaneNormal.CopyVector(&Line.endpoints[0]->node->x);
     2606  CirclePlaneNormal.SubtractVector(&Line.endpoints[1]->node->x);
     2607
     2608  // calculate squared radius of circle
     2609  radius = CirclePlaneNormal.ScalarProduct(&CirclePlaneNormal);
     2610  if (radius/4. < RADIUS*RADIUS) {
     2611    CircleRadius = RADIUS*RADIUS - radius/4.;
     2612    CirclePlaneNormal.Normalize();
     2613    cout << Verbose(2) << "INFO: CircleCenter is at " << CircleCenter << ", CirclePlaneNormal is " << CirclePlaneNormal << " with circle radius " << sqrt(CircleRadius) << "." << endl;
     2614
     2615    // construct old center
     2616    GetCenterofCircumcircle(&OldSphereCenter, &(T.endpoints[0]->node->x), &(T.endpoints[1]->node->x), &(T.endpoints[2]->node->x));
     2617    helper.CopyVector(&T.NormalVector);  // normal vector ensures that this is correct center of the two possible ones
     2618    radius = Line.endpoints[0]->node->x.DistanceSquared(&OldSphereCenter);
     2619    helper.Scale(sqrt(RADIUS*RADIUS - radius));
     2620    OldSphereCenter.AddVector(&helper);
     2621    OldSphereCenter.SubtractVector(&CircleCenter);
     2622    cout << Verbose(2) << "INFO: OldSphereCenter is at " << OldSphereCenter << "." << endl;
     2623
     2624    // construct SearchDirection
     2625    SearchDirection.MakeNormalVector(&T.NormalVector, &CirclePlaneNormal);
     2626    helper.CopyVector(&Line.endpoints[0]->node->x);
     2627    helper.SubtractVector(&ThirdNode->x);
     2628    if (helper.ScalarProduct(&SearchDirection) < -HULLEPSILON)  // ohoh, SearchDirection points inwards!
     2629      SearchDirection.Scale(-1.);
     2630    SearchDirection.ProjectOntoPlane(&OldSphereCenter);
     2631    SearchDirection.Normalize();
     2632    cout << Verbose(2) << "INFO: SearchDirection is " << SearchDirection << "." << endl;
     2633    if (fabs(OldSphereCenter.ScalarProduct(&SearchDirection)) > HULLEPSILON) {  // rotated the wrong way!
     2634      cerr << "ERROR: SearchDirection and RelativeOldSphereCenter are still not orthogonal!" << endl;
     2635    }
     2636
     2637    // add third point
     2638    cout << Verbose(1) << "Looking for third point candidates for triangle ... " << endl;
     2639    Find_third_point_for_Tesselation(T.NormalVector, SearchDirection, OldSphereCenter, &Line, ThirdNode, Opt_Candidate, &OptCandidateCenter, &ShortestAngle, RADIUS, LC);
     2640
     2641  } else {
     2642    cout << Verbose(1) << "Circumcircle for base line " << Line << " and base triangle " << T << " is too big!" << endl;
     2643  }
     2644
     2645  if (Opt_Candidate == NULL) {
     2646    cerr << "WARNING: Could not find a suitable candidate." << endl;
     2647    return false;
     2648  }
     2649  cout << Verbose(1) << " Optimal candidate is " << *Opt_Candidate << " with circumsphere's center at " << OptCandidateCenter << "." << endl;
     2650
     2651  // check whether all edges of the new triangle still have space for one more triangle (i.e. TriangleCount <2)
     2652  bool flag = CheckPresenceOfTriangle(out, Opt_Candidate, Line.endpoints[0]->node, Line.endpoints[1]->node);
     2653
     2654  if (flag) { // if so, add
     2655    AddTrianglePoint(Opt_Candidate, 0);
     2656    AddTrianglePoint(Line.endpoints[0]->node, 1);
     2657    AddTrianglePoint(Line.endpoints[1]->node, 2);
     2658
     2659    AddTriangleLine(TPS[0], TPS[1], 0);
     2660    AddTriangleLine(TPS[0], TPS[2], 1);
     2661    AddTriangleLine(TPS[1], TPS[2], 2);
     2662
     2663    BTS = new class BoundaryTriangleSet(BLS, TrianglesOnBoundaryCount);
     2664    AddTriangleToLines();
     2665
     2666    OptCandidateCenter.Scale(-1.);
     2667    BTS->GetNormalVector(OptCandidateCenter);
     2668    OptCandidateCenter.Scale(-1.);
     2669
     2670    cout << "--> New triangle with " << *BTS << " and normal vector " << BTS->NormalVector << " for this triangle ... " << endl;
     2671    cout << Verbose(1) << "We have "<< TrianglesOnBoundaryCount << " for line " << Line << "." << endl;
     2672  } else { // else, yell and do nothing
     2673    cout << Verbose(1) << "This triangle consisting of ";
     2674    cout << *Opt_Candidate << ", ";
     2675    cout << *Line.endpoints[0]->node << " and ";
     2676    cout << *Line.endpoints[1]->node << " ";
     2677    cout << "is invalid!" << endl;
     2678    return false;
     2679  }
     2680
     2681  if (flag && (DoSingleStepOutput && (TrianglesOnBoundaryCount % 10 == 0))) { // if we have a new triangle and want to output each new triangle configuration
     2682    sprintf(NumberName, "-%04d-%s_%s_%s", TriangleFilesWritten, BTS->endpoints[0]->node->Name, BTS->endpoints[1]->node->Name, BTS->endpoints[2]->node->Name);
     2683    if (DoTecplotOutput) {
     2684      string NameofTempFile(tempbasename);
     2685      NameofTempFile.append(NumberName);
     2686      for(size_t npos = NameofTempFile.find_first_of(' '); npos != string::npos; npos = NameofTempFile.find(' ', npos))
     2687        NameofTempFile.erase(npos, 1);
     2688      NameofTempFile.append(TecplotSuffix);
     2689      cout << Verbose(1) << "Writing temporary non convex hull to file " << NameofTempFile << ".\n";
     2690      tempstream = new ofstream(NameofTempFile.c_str(), ios::trunc);
     2691      write_tecplot_file(out, tempstream, this, mol, TriangleFilesWritten);
     2692      tempstream->close();
     2693      tempstream->flush();
     2694      delete(tempstream);
     2695    }
     2696
     2697    if (DoRaster3DOutput) {
     2698      string NameofTempFile(tempbasename);
     2699      NameofTempFile.append(NumberName);
     2700      for(size_t npos = NameofTempFile.find_first_of(' '); npos != string::npos; npos = NameofTempFile.find(' ', npos))
     2701        NameofTempFile.erase(npos, 1);
     2702      NameofTempFile.append(Raster3DSuffix);
     2703      cout << Verbose(1) << "Writing temporary non convex hull to file " << NameofTempFile << ".\n";
     2704      tempstream = new ofstream(NameofTempFile.c_str(), ios::trunc);
     2705      write_raster3d_file(out, tempstream, this, mol);
     2706      // include the current position of the virtual sphere in the temporary raster3d file
     2707      // make the circumsphere's center absolute again
     2708      helper.CopyVector(&Line.endpoints[0]->node->x);
     2709      helper.AddVector(&Line.endpoints[1]->node->x);
     2710      helper.Scale(0.5);
     2711      OptCandidateCenter.AddVector(&helper);
     2712      Vector *center = mol->DetermineCenterOfAll(out);
     2713      OptCandidateCenter.AddVector(center);
     2714      delete(center);
     2715      // and add to file plus translucency object
     2716      *tempstream << "# current virtual sphere\n";
     2717      *tempstream << "8\n  25.0    0.6     -1.0 -1.0 -1.0     0.2        0 0 0 0\n";
     2718      *tempstream << "2\n  " << OptCandidateCenter.x[0] << " " << OptCandidateCenter.x[1] << " " << OptCandidateCenter.x[2] << "\t" << RADIUS << "\t1 0 0\n";
     2719      *tempstream << "9\n  terminating special property\n";
     2720      tempstream->close();
     2721      tempstream->flush();
     2722      delete(tempstream);
     2723    }
     2724    if (DoTecplotOutput || DoRaster3DOutput)
     2725      TriangleFilesWritten++;
     2726  }
     2727
     2728  cout << Verbose(1) << "End of Find_next_suitable_triangle\n";
     2729  return true;
     2730};
     2731
     2732/** Tesselates the non convex boundary by rolling a virtual sphere along the surface of the molecule.
     2733 * \param *out output stream for debugging
     2734 * \param *mol molecule structure with Atom's and Bond's
     2735 * \param *Tess Tesselation filled with points, lines and triangles on boundary on return
     2736 * \param *LCList linked cell list of all atoms
     2737 * \param *filename filename prefix for output of vertex data
     2738 * \para RADIUS radius of the virtual sphere
     2739 */
     2740void Find_non_convex_border(ofstream *out, molecule* mol, class Tesselation *Tess, class LinkedCell *LCList, const char *filename, const double RADIUS)
    23452741{
    23462742  int N = 0;
    2347   struct Tesselation *Tess = new Tesselation;
    2348   cout << Verbose(1) << "Entering search for non convex hull. " << endl;
    2349   cout << flush;
     2743  bool freeTess = false;
     2744  *out << Verbose(1) << "Entering search for non convex hull. " << endl;
     2745  if (Tess == NULL) {
     2746    *out << Verbose(1) << "Allocating Tesselation struct ..." << endl;
     2747    Tess = new Tesselation;
     2748    freeTess = true;
     2749  }
     2750  bool freeLC = false;
    23502751  LineMap::iterator baseline;
    2351   cout << Verbose(0) << "Begin of Find_non_convex_border\n";
     2752  *out << Verbose(0) << "Begin of Find_non_convex_border\n";
    23522753  bool flag = false;  // marks whether we went once through all baselines without finding any without two triangles
    23532754  bool failflag = false;
    2354   if ((mol->first->next == mol->last) || (mol->last->previous == mol->first))
    2355     mol->CreateAdjacencyList((ofstream *)&cout, 1.6, true);
    2356 
    2357   Tess->Find_starting_triangle(mol, RADIUS);
     2755
     2756  if (LCList == NULL) {
     2757    LCList = new LinkedCell(mol, 2.*RADIUS);
     2758    freeLC = true;
     2759  }
     2760
     2761  Tess->Find_starting_triangle(out, mol, RADIUS, LCList);
    23582762
    23592763  baseline = Tess->LinesOnBoundary.begin();
    23602764  while ((baseline != Tess->LinesOnBoundary.end()) || (flag)) {
    23612765    if (baseline->second->TrianglesCount == 1) {
    2362       failflag = Tess->Find_next_suitable_triangle(out, tecplot, mol, *(baseline->second), *(((baseline->second->triangles.begin()))->second), RADIUS, N, filename); //the line is there, so there is a triangle, but only one.
     2766      failflag = Tess->Find_next_suitable_triangle(out, mol, *(baseline->second), *(((baseline->second->triangles.begin()))->second), RADIUS, N, filename, LCList); //the line is there, so there is a triangle, but only one.
    23632767      flag = flag || failflag;
    23642768      if (!failflag)
     
    23742778    }
    23752779  }
    2376   if (failflag) {
    2377     cout << Verbose(1) << "Writing final tecplot file\n";
    2378     if (DoTecplotOutput)
     2780  if (1) { //failflag) {
     2781    *out << Verbose(1) << "Writing final tecplot file\n";
     2782    if (DoTecplotOutput) {
     2783      string OutputName(filename);
     2784      OutputName.append(TecplotSuffix);
     2785      ofstream *tecplot = new ofstream(OutputName.c_str());
    23792786      write_tecplot_file(out, tecplot, Tess, mol, -1);
    2380     if (DoRaster3DOutput)
    2381       write_raster3d_file(out, tecplot, Tess, mol);
     2787      tecplot->close();
     2788      delete(tecplot);
     2789    }
     2790    if (DoRaster3DOutput) {
     2791      string OutputName(filename);
     2792      OutputName.append(Raster3DSuffix);
     2793      ofstream *raster = new ofstream(OutputName.c_str());
     2794      write_raster3d_file(out, raster, Tess, mol);
     2795      raster->close();
     2796      delete(raster);
     2797    }
    23822798  } else {
    23832799    cerr << "ERROR: Could definately not find all necessary triangles!" << endl;
    23842800  }
    2385 
    2386   cout << Verbose(0) << "End of Find_non_convex_border\n";
    2387   delete(Tess);
     2801  if (freeTess)
     2802    delete(Tess);
     2803  if (freeLC)
     2804    delete(LCList);
     2805  *out << Verbose(0) << "End of Find_non_convex_border\n";
    23882806};
    23892807
     2808/** Finds a hole of sufficient size in \a this molecule to embed \a *srcmol into it.
     2809 * \param *out output stream for debugging
     2810 * \param *srcmol molecule to embed into
     2811 * \return *Vector new center of \a *srcmol for embedding relative to \a this
     2812 */
     2813Vector* molecule::FindEmbeddingHole(ofstream *out, molecule *srcmol)
     2814{
     2815  Vector *Center = new Vector;
     2816  Center->Zero();
     2817  // calculate volume/shape of \a *srcmol
     2818
     2819  // find embedding holes
     2820
     2821  // if more than one, let user choose
     2822
     2823  // return embedding center
     2824  return Center;
     2825};
     2826
Note: See TracChangeset for help on using the changeset viewer.