Changeset 190326 for src/tesselation.cpp
- Timestamp:
- Jun 2, 2010, 11:19:27 AM (16 years ago)
- Branches:
- Action_Thermostats, Add_AtomRandomPerturbation, Add_FitFragmentPartialChargesAction, Add_RotateAroundBondAction, Add_SelectAtomByNameAction, Added_ParseSaveFragmentResults, AddingActions_SaveParseParticleParameters, Adding_Graph_to_ChangeBondActions, Adding_MD_integration_tests, Adding_ParticleName_to_Atom, Adding_StructOpt_integration_tests, AtomFragments, Automaking_mpqc_open, AutomationFragmentation_failures, Candidate_v1.5.4, Candidate_v1.6.0, Candidate_v1.6.1, Candidate_v1.7.0, Candidate_v1.7.1, ChangeBugEmailaddress, ChangingTestPorts, ChemicalSpaceEvaluator, CombiningParticlePotentialParsing, Combining_Subpackages, Debian_Package_split, Debian_package_split_molecuildergui_only, Disabling_MemDebug, Docu_Python_wait, EmpiricalPotential_contain_HomologyGraph, EmpiricalPotential_contain_HomologyGraph_documentation, Enable_parallel_make_install, Enhance_userguide, Enhanced_StructuralOptimization, Enhanced_StructuralOptimization_continued, Example_ManyWaysToTranslateAtom, Exclude_Hydrogens_annealWithBondGraph, FitPartialCharges_GlobalError, Fix_BoundInBox_CenterInBox_MoleculeActions, Fix_ChargeSampling_PBC, Fix_ChronosMutex, Fix_FitPartialCharges, Fix_FitPotential_needs_atomicnumbers, Fix_ForceAnnealing, Fix_IndependentFragmentGrids, Fix_ParseParticles, Fix_ParseParticles_split_forward_backward_Actions, Fix_PopActions, Fix_QtFragmentList_sorted_selection, Fix_Restrictedkeyset_FragmentMolecule, Fix_StatusMsg, Fix_StepWorldTime_single_argument, Fix_Verbose_Codepatterns, Fix_fitting_potentials, Fixes, ForceAnnealing_goodresults, ForceAnnealing_oldresults, ForceAnnealing_tocheck, ForceAnnealing_with_BondGraph, ForceAnnealing_with_BondGraph_continued, ForceAnnealing_with_BondGraph_continued_betteresults, ForceAnnealing_with_BondGraph_contraction-expansion, FragmentAction_writes_AtomFragments, FragmentMolecule_checks_bonddegrees, GeometryObjects, Gui_Fixes, Gui_displays_atomic_force_velocity, ImplicitCharges, IndependentFragmentGrids, IndependentFragmentGrids_IndividualZeroInstances, IndependentFragmentGrids_IntegrationTest, IndependentFragmentGrids_Sole_NN_Calculation, JobMarket_RobustOnKillsSegFaults, JobMarket_StableWorkerPool, JobMarket_unresolvable_hostname_fix, MoreRobust_FragmentAutomation, ODR_violation_mpqc_open, PartialCharges_OrthogonalSummation, PdbParser_setsAtomName, PythonUI_with_named_parameters, QtGui_reactivate_TimeChanged_changes, Recreated_GuiChecks, Rewrite_FitPartialCharges, RotateToPrincipalAxisSystem_UndoRedo, SaturateAtoms_findBestMatching, SaturateAtoms_singleDegree, StoppableMakroAction, Subpackage_CodePatterns, Subpackage_JobMarket, Subpackage_LinearAlgebra, Subpackage_levmar, Subpackage_mpqc_open, Subpackage_vmg, Switchable_LogView, ThirdParty_MPQC_rebuilt_buildsystem, TrajectoryDependenant_MaxOrder, TremoloParser_IncreasedPrecision, TremoloParser_MultipleTimesteps, TremoloParser_setsAtomName, Ubuntu_1604_changes, stable
- Children:
- 5f5a7b, 67c75b
- Parents:
- 9cf88c (diff), 27ac00 (diff)
Note: this is a merge changeset, the changes displayed below correspond to the merge itself.
Use the(diff)links above to see all the changes relative to each parent. - File:
-
- 1 edited
-
src/tesselation.cpp (modified) (229 diffs)
Legend:
- Unmodified
- Added
- Removed
-
src/tesselation.cpp
r9cf88c r190326 7 7 8 8 #include <fstream> 9 #include <assert.h> 9 10 10 11 #include "helpers.hpp" … … 14 15 #include "tesselation.hpp" 15 16 #include "tesselationhelpers.hpp" 17 #include "triangleintersectionlist.hpp" 16 18 #include "vector.hpp" 19 #include "Line.hpp" 20 #include "vector_ops.hpp" 17 21 #include "verbose.hpp" 22 #include "Plane.hpp" 23 #include "Exceptions/LinearDependenceException.hpp" 24 #include "Helpers/Assert.hpp" 18 25 19 26 class molecule; … … 24 31 */ 25 32 BoundaryPointSet::BoundaryPointSet() : 26 LinesCount(0), 27 value(0.), 28 Nr(-1) 29 { 30 Info FunctionInfo(__func__); 31 Log() << Verbose(1) << "Adding noname." << endl; 32 }; 33 LinesCount(0), value(0.), Nr(-1) 34 { 35 Info FunctionInfo(__func__); 36 DoLog(1) && (Log() << Verbose(1) << "Adding noname." << endl); 37 } 38 ; 33 39 34 40 /** Constructor of BoundaryPointSet with Tesselpoint. … … 36 42 */ 37 43 BoundaryPointSet::BoundaryPointSet(TesselPoint * const Walker) : 38 LinesCount(0), 39 node(Walker), 40 value(0.), 41 Nr(Walker->nr) 42 { 43 Info FunctionInfo(__func__); 44 Log() << Verbose(1) << "Adding Node " << *Walker << endl; 45 }; 44 LinesCount(0), node(Walker), value(0.), Nr(Walker->nr) 45 { 46 Info FunctionInfo(__func__); 47 DoLog(1) && (Log() << Verbose(1) << "Adding Node " << *Walker << endl); 48 } 49 ; 46 50 47 51 /** Destructor of BoundaryPointSet. … … 51 55 BoundaryPointSet::~BoundaryPointSet() 52 56 { 53 Info FunctionInfo(__func__);57 Info FunctionInfo(__func__); 54 58 //Log() << Verbose(0) << "Erasing point nr. " << Nr << "." << endl; 55 59 if (!lines.empty()) 56 eLog() << Verbose(2) << "Memory Leak! I " << *this << " am still connected to some lines." << endl;60 DoeLog(2) && (eLog() << Verbose(2) << "Memory Leak! I " << *this << " am still connected to some lines." << endl); 57 61 node = NULL; 58 }; 62 } 63 ; 59 64 60 65 /** Add a line to the LineMap of this point. … … 63 68 void BoundaryPointSet::AddLine(BoundaryLineSet * const line) 64 69 { 65 Info FunctionInfo(__func__); 66 Log() << Verbose(1) << "Adding " << *this << " to line " << *line << "." 67 << endl; 68 if (line->endpoints[0] == this) 69 { 70 lines.insert(LinePair(line->endpoints[1]->Nr, line)); 71 } 72 else 73 { 74 lines.insert(LinePair(line->endpoints[0]->Nr, line)); 75 } 70 Info FunctionInfo(__func__); 71 DoLog(1) && (Log() << Verbose(1) << "Adding " << *this << " to line " << *line << "." << endl); 72 if (line->endpoints[0] == this) { 73 lines.insert(LinePair(line->endpoints[1]->Nr, line)); 74 } else { 75 lines.insert(LinePair(line->endpoints[0]->Nr, line)); 76 } 76 77 LinesCount++; 77 }; 78 } 79 ; 78 80 79 81 /** output operator for BoundaryPointSet. … … 83 85 ostream & operator <<(ostream &ost, const BoundaryPointSet &a) 84 86 { 85 ost << "[" << a.Nr << "|" << a.node-> Name<< " at " << *a.node->node << "]";87 ost << "[" << a.Nr << "|" << a.node->getName() << " at " << *a.node->node << "]"; 86 88 return ost; 87 89 } … … 93 95 */ 94 96 BoundaryLineSet::BoundaryLineSet() : 95 Nr(-1)96 { 97 Info FunctionInfo(__func__);97 Nr(-1) 98 { 99 Info FunctionInfo(__func__); 98 100 for (int i = 0; i < 2; i++) 99 101 endpoints[i] = NULL; 100 }; 102 } 103 ; 101 104 102 105 /** Constructor of BoundaryLineSet with two endpoints. … … 107 110 BoundaryLineSet::BoundaryLineSet(BoundaryPointSet * const Point[2], const int number) 108 111 { 109 Info FunctionInfo(__func__);112 Info FunctionInfo(__func__); 110 113 // set number 111 114 Nr = number; … … 118 121 skipped = false; 119 122 // clear triangles list 120 Log() << Verbose(0) << "New Line with endpoints " << *this << "." << endl; 121 }; 123 DoLog(0) && (Log() << Verbose(0) << "New Line with endpoints " << *this << "." << endl); 124 } 125 ; 122 126 123 127 /** Constructor of BoundaryLineSet with two endpoints. … … 140 144 skipped = false; 141 145 // clear triangles list 142 Log() << Verbose(0) << "New Line with endpoints " << *this << "." << endl; 143 }; 146 DoLog(0) && (Log() << Verbose(0) << "New Line with endpoints " << *this << "." << endl); 147 } 148 ; 144 149 145 150 /** Destructor for BoundaryLineSet. … … 149 154 BoundaryLineSet::~BoundaryLineSet() 150 155 { 151 Info FunctionInfo(__func__);156 Info FunctionInfo(__func__); 152 157 int Numbers[2]; 153 158 … … 180 185 //Log() << Verbose(0) << *endpoints[i] << " has no more lines it's attached to, erasing." << endl; 181 186 if (endpoints[i] != NULL) { 182 delete (endpoints[i]);187 delete (endpoints[i]); 183 188 endpoints[i] = NULL; 184 189 } … … 187 192 } 188 193 if (!triangles.empty()) 189 eLog() << Verbose(2) << "Memory Leak! I " << *this << " am still connected to some triangles." << endl; 190 }; 194 DoeLog(2) && (eLog() << Verbose(2) << "Memory Leak! I " << *this << " am still connected to some triangles." << endl); 195 } 196 ; 191 197 192 198 /** Add triangle to TriangleMap of this boundary line. … … 195 201 void BoundaryLineSet::AddTriangle(BoundaryTriangleSet * const triangle) 196 202 { 197 Info FunctionInfo(__func__);198 Log() << Verbose(0) << "Add " << triangle->Nr << " to line " << *this << "." << endl;203 Info FunctionInfo(__func__); 204 DoLog(0) && (Log() << Verbose(0) << "Add " << triangle->Nr << " to line " << *this << "." << endl); 199 205 triangles.insert(TrianglePair(triangle->Nr, triangle)); 200 }; 206 } 207 ; 201 208 202 209 /** Checks whether we have a common endpoint with given \a *line. … … 206 213 bool BoundaryLineSet::IsConnectedTo(const BoundaryLineSet * const line) const 207 214 { 208 Info FunctionInfo(__func__);215 Info FunctionInfo(__func__); 209 216 if ((endpoints[0] == line->endpoints[0]) || (endpoints[1] == line->endpoints[0]) || (endpoints[0] == line->endpoints[1]) || (endpoints[1] == line->endpoints[1])) 210 217 return true; 211 218 else 212 219 return false; 213 }; 220 } 221 ; 214 222 215 223 /** Checks whether the adjacent triangles of a baseline are convex or not. … … 221 229 bool BoundaryLineSet::CheckConvexityCriterion() const 222 230 { 223 Info FunctionInfo(__func__);231 Info FunctionInfo(__func__); 224 232 Vector BaseLineCenter, BaseLineNormal, BaseLine, helper[2], NormalCheck; 225 233 // get the two triangles 226 234 if (triangles.size() != 2) { 227 eLog() << Verbose(0) << "Baseline " << *this << " is connected to less than two triangles, Tesselation incomplete!" << endl;235 DoeLog(0) && (eLog() << Verbose(0) << "Baseline " << *this << " is connected to less than two triangles, Tesselation incomplete!" << endl); 228 236 return true; 229 237 } … … 231 239 // have a normal vector on the base line pointing outwards 232 240 //Log() << Verbose(0) << "INFO: " << *this << " has vectors at " << *(endpoints[0]->node->node) << " and at " << *(endpoints[1]->node->node) << "." << endl; 233 BaseLineCenter.CopyVector(endpoints[0]->node->node); 234 BaseLineCenter.AddVector(endpoints[1]->node->node); 235 BaseLineCenter.Scale(1./2.); 236 BaseLine.CopyVector(endpoints[0]->node->node); 237 BaseLine.SubtractVector(endpoints[1]->node->node); 241 BaseLineCenter = (1./2.)*((*endpoints[0]->node->node) + (*endpoints[1]->node->node)); 242 BaseLine = (*endpoints[0]->node->node) - (*endpoints[1]->node->node); 243 238 244 //Log() << Verbose(0) << "INFO: Baseline is " << BaseLine << " and its center is at " << BaseLineCenter << "." << endl; 239 245 … … 241 247 NormalCheck.Zero(); 242 248 double sign = -1.; 243 int i =0;249 int i = 0; 244 250 class BoundaryPointSet *node = NULL; 245 for (TriangleMap::const_iterator runner = triangles.begin(); runner != triangles.end(); runner++) {251 for (TriangleMap::const_iterator runner = triangles.begin(); runner != triangles.end(); runner++) { 246 252 //Log() << Verbose(0) << "INFO: NormalVector of " << *(runner->second) << " is " << runner->second->NormalVector << "." << endl; 247 NormalCheck .AddVector(&runner->second->NormalVector);248 NormalCheck .Scale(sign);253 NormalCheck += runner->second->NormalVector; 254 NormalCheck *= sign; 249 255 sign = -sign; 250 256 if (runner->second->NormalVector.NormSquared() > MYEPSILON) 251 BaseLineNormal .CopyVector(&runner->second->NormalVector); // yes, copy second on top of first257 BaseLineNormal = runner->second->NormalVector; // yes, copy second on top of first 252 258 else { 253 eLog() << Verbose(0) << "Triangle " << *runner->second << " has zero normal vector!" << endl;259 DoeLog(0) && (eLog() << Verbose(0) << "Triangle " << *runner->second << " has zero normal vector!" << endl); 254 260 } 255 261 node = runner->second->GetThirdEndpoint(this); 256 262 if (node != NULL) { 257 263 //Log() << Verbose(0) << "INFO: Third node for triangle " << *(runner->second) << " is " << *node << " at " << *(node->node->node) << "." << endl; 258 helper[i].CopyVector(node->node->node); 259 helper[i].SubtractVector(&BaseLineCenter); 260 helper[i].MakeNormalVector(&BaseLine); // we want to compare the triangle's heights' angles! 264 helper[i] = (*node->node->node) - BaseLineCenter; 265 helper[i].MakeNormalTo(BaseLine); // we want to compare the triangle's heights' angles! 261 266 //Log() << Verbose(0) << "INFO: Height vector with respect to baseline is " << helper[i] << "." << endl; 262 267 i++; 263 268 } else { 264 eLog() << Verbose(1) << "I cannot find third node in triangle, something's wrong." << endl;269 DoeLog(1) && (eLog() << Verbose(1) << "I cannot find third node in triangle, something's wrong." << endl); 265 270 return true; 266 271 } … … 268 273 //Log() << Verbose(0) << "INFO: BaselineNormal is " << BaseLineNormal << "." << endl; 269 274 if (NormalCheck.NormSquared() < MYEPSILON) { 270 Log() << Verbose(0) << "ACCEPT: Normalvectors of both triangles are the same: convex." << endl;275 DoLog(0) && (Log() << Verbose(0) << "ACCEPT: Normalvectors of both triangles are the same: convex." << endl); 271 276 return true; 272 277 } … … 274 279 double angle = GetAngle(helper[0], helper[1], BaseLineNormal); 275 280 if ((angle - M_PI) > -MYEPSILON) { 276 Log() << Verbose(0) << "ACCEPT: Angle is greater than pi: convex." << endl;281 DoLog(0) && (Log() << Verbose(0) << "ACCEPT: Angle is greater than pi: convex." << endl); 277 282 return true; 278 283 } else { 279 Log() << Verbose(0) << "REJECT: Angle is less than pi: concave." << endl;284 DoLog(0) && (Log() << Verbose(0) << "REJECT: Angle is less than pi: concave." << endl); 280 285 return false; 281 286 } … … 288 293 bool BoundaryLineSet::ContainsBoundaryPoint(const BoundaryPointSet * const point) const 289 294 { 290 Info FunctionInfo(__func__);291 for (int i=0;i<2;i++)295 Info FunctionInfo(__func__); 296 for (int i = 0; i < 2; i++) 292 297 if (point == endpoints[i]) 293 298 return true; 294 299 return false; 295 }; 300 } 301 ; 296 302 297 303 /** Returns other endpoint of the line. … … 301 307 class BoundaryPointSet *BoundaryLineSet::GetOtherEndpoint(const BoundaryPointSet * const point) const 302 308 { 303 Info FunctionInfo(__func__);309 Info FunctionInfo(__func__); 304 310 if (endpoints[0] == point) 305 311 return endpoints[1]; … … 308 314 else 309 315 return NULL; 310 }; 316 } 317 ; 311 318 312 319 /** output operator for BoundaryLineSet. … … 314 321 * \param &a boundary line 315 322 */ 316 ostream & operator <<(ostream &ost, const BoundaryLineSet &a)317 { 318 ost << "[" << a.Nr << "|" << a.endpoints[0]->node-> Name << " at " << *a.endpoints[0]->node->node << "," << a.endpoints[1]->node->Name<< " at " << *a.endpoints[1]->node->node << "]";323 ostream & operator <<(ostream &ost, const BoundaryLineSet &a) 324 { 325 ost << "[" << a.Nr << "|" << a.endpoints[0]->node->getName() << " at " << *a.endpoints[0]->node->node << "," << a.endpoints[1]->node->getName() << " at " << *a.endpoints[1]->node->node << "]"; 319 326 return ost; 320 }; 327 } 328 ; 321 329 322 330 // ======================================== Triangles on Boundary ================================= … … 327 335 Nr(-1) 328 336 { 329 Info FunctionInfo(__func__);330 for (int i = 0; i < 3; i++) 331 {332 endpoints[i] = NULL;333 lines[i] = NULL;334 }335 };337 Info FunctionInfo(__func__); 338 for (int i = 0; i < 3; i++) { 339 endpoints[i] = NULL; 340 lines[i] = NULL; 341 } 342 } 343 ; 336 344 337 345 /** Constructor for BoundaryTriangleSet with three lines. … … 342 350 Nr(number) 343 351 { 344 Info FunctionInfo(__func__);352 Info FunctionInfo(__func__); 345 353 // set number 346 354 // set lines … … 354 362 // for all three lines 355 363 for (int j = 0; j < 2; j++) { // for both endpoints 356 OrderMap.insert(pair<int, class BoundaryPointSet *> ( 357 line[i]->endpoints[j]->Nr, line[i]->endpoints[j])); 364 OrderMap.insert(pair<int, class BoundaryPointSet *> (line[i]->endpoints[j]->Nr, line[i]->endpoints[j])); 358 365 // and we don't care whether insertion fails 359 366 } 360 367 // set endpoints 361 368 int Counter = 0; 362 Log() << Verbose(0) << "New triangle " << Nr << " with end points: " << endl;369 DoLog(0) && (Log() << Verbose(0) << "New triangle " << Nr << " with end points: " << endl); 363 370 for (PointMap::iterator runner = OrderMap.begin(); runner != OrderMap.end(); runner++) { 364 371 endpoints[Counter] = runner->second; 365 Log() << Verbose(0) << " " << *endpoints[Counter] << endl;372 DoLog(0) && (Log() << Verbose(0) << " " << *endpoints[Counter] << endl); 366 373 Counter++; 367 374 } 368 375 if (Counter < 3) { 369 eLog() << Verbose(0) << "We have a triangle with only two distinct endpoints!" << endl;376 DoeLog(0) && (eLog() << Verbose(0) << "We have a triangle with only two distinct endpoints!" << endl); 370 377 performCriticalExit(); 371 378 } 372 }; 379 } 380 ; 373 381 374 382 /** Destructor of BoundaryTriangleSet. … … 378 386 BoundaryTriangleSet::~BoundaryTriangleSet() 379 387 { 380 Info FunctionInfo(__func__);388 Info FunctionInfo(__func__); 381 389 for (int i = 0; i < 3; i++) { 382 390 if (lines[i] != NULL) { … … 385 393 } 386 394 if (lines[i]->triangles.empty()) { 387 //Log() << Verbose(0) << *lines[i] << " is no more attached to any triangle, erasing." << endl;388 delete (lines[i]);389 lines[i] = NULL;395 //Log() << Verbose(0) << *lines[i] << " is no more attached to any triangle, erasing." << endl; 396 delete (lines[i]); 397 lines[i] = NULL; 390 398 } 391 399 } 392 400 } 393 401 //Log() << Verbose(0) << "Erasing triangle Nr." << Nr << " itself." << endl; 394 }; 402 } 403 ; 395 404 396 405 /** Calculates the normal vector for this triangle. … … 400 409 void BoundaryTriangleSet::GetNormalVector(const Vector &OtherVector) 401 410 { 402 Info FunctionInfo(__func__);411 Info FunctionInfo(__func__); 403 412 // get normal vector 404 NormalVector.MakeNormalVector(endpoints[0]->node->node, endpoints[1]->node->node, endpoints[2]->node->node); 413 NormalVector = Plane(*(endpoints[0]->node->node), 414 *(endpoints[1]->node->node), 415 *(endpoints[2]->node->node)).getNormal(); 405 416 406 417 // make it always point inward (any offset vector onto plane projected onto normal vector suffices) 407 if (NormalVector.ScalarProduct( &OtherVector) > 0.)418 if (NormalVector.ScalarProduct(OtherVector) > 0.) 408 419 NormalVector.Scale(-1.); 409 Log() << Verbose(1) << "Normal Vector is " << NormalVector << "." << endl; 410 }; 420 DoLog(1) && (Log() << Verbose(1) << "Normal Vector is " << NormalVector << "." << endl); 421 } 422 ; 411 423 412 424 /** Finds the point on the triangle \a *BTS through which the line defined by \a *MolCenter and \a *x crosses. … … 422 434 * \return true - \a *Intersection contains intersection on plane defined by triangle, false - zero vector if outside of triangle. 423 435 */ 436 424 437 bool BoundaryTriangleSet::GetIntersectionInsideTriangle(const Vector * const MolCenter, const Vector * const x, Vector * const Intersection) const 425 438 { … … 428 441 Vector helper; 429 442 430 if (!Intersection->GetIntersectionWithPlane(&NormalVector, endpoints[0]->node->node, MolCenter, x)){431 eLog() << Verbose(1) << "Alas! Intersection with plane failed - at least numerically - the intersection is not on the plane!" << endl;432 return false;433 } 434 435 Log() << Verbose(1) << "INFO: Triangle is " << *this << "." << endl;436 Log() << Verbose(1) << "INFO: Line is from " << *MolCenter << " to " << *x << "." << endl;437 Log() << Verbose(1) << "INFO: Intersection is " << *Intersection << "." << endl; 438 439 if (Intersection->DistanceSquared(endpoints[0]->node->node) < MYEPSILON) {440 Log() << Verbose(1) << "Intersection coindices with first endpoint." << endl;441 return true;442 } else if (Intersection->DistanceSquared(endpoints[1]->node->node) < MYEPSILON) {443 Log() << Verbose(1) << "Intersection coindices with second endpoint." << endl;444 return true;445 } else if (Intersection->DistanceSquared(endpoints[2]->node->node) < MYEPSILON) {446 Log() << Verbose(1) << "Intersection coindices with third endpoint." << endl;447 return true;448 }449 // Calculate cross point between one baseline and the line from the third endpoint to intersection450 int i=0;451 do {452 if (CrossPoint.GetIntersectionOfTwoLinesOnPlane(endpoints[i%3]->node->node, endpoints[(i+1)%3]->node->node, endpoints[(i+2)%3]->node->node, Intersection, &NormalVector)) {453 helper.CopyVector(endpoints[(i+1)%3]->node->node);454 helper .SubtractVector(endpoints[i%3]->node->node);455 CrossPoint .SubtractVector(endpoints[i%3]->node->node); // cross point was returned as absolute vector456 const double s = CrossPoint.ScalarProduct( &helper)/helper.NormSquared();457 Log() << Verbose(1) << "INFO: Factor s is " << s << "." << endl;443 try { 444 Line centerLine = makeLineThrough(*MolCenter, *x); 445 *Intersection = Plane(NormalVector, *(endpoints[0]->node->node)).GetIntersection(centerLine); 446 447 DoLog(1) && (Log() << Verbose(1) << "INFO: Triangle is " << *this << "." << endl); 448 DoLog(1) && (Log() << Verbose(1) << "INFO: Line is from " << *MolCenter << " to " << *x << "." << endl); 449 DoLog(1) && (Log() << Verbose(1) << "INFO: Intersection is " << *Intersection << "." << endl); 450 451 if (Intersection->DistanceSquared(*endpoints[0]->node->node) < MYEPSILON) { 452 DoLog(1) && (Log() << Verbose(1) << "Intersection coindices with first endpoint." << endl); 453 return true; 454 } else if (Intersection->DistanceSquared(*endpoints[1]->node->node) < MYEPSILON) { 455 DoLog(1) && (Log() << Verbose(1) << "Intersection coindices with second endpoint." << endl); 456 return true; 457 } else if (Intersection->DistanceSquared(*endpoints[2]->node->node) < MYEPSILON) { 458 DoLog(1) && (Log() << Verbose(1) << "Intersection coindices with third endpoint." << endl); 459 return true; 460 } 461 // Calculate cross point between one baseline and the line from the third endpoint to intersection 462 int i = 0; 463 do { 464 Line line1 = makeLineThrough(*(endpoints[i%3]->node->node),*(endpoints[(i+1)%3]->node->node)); 465 Line line2 = makeLineThrough(*(endpoints[(i+2)%3]->node->node),*Intersection); 466 CrossPoint = line1.getIntersection(line2); 467 helper = (*endpoints[(i+1)%3]->node->node) - (*endpoints[i%3]->node->node); 468 CrossPoint -= (*endpoints[i%3]->node->node); // cross point was returned as absolute vector 469 const double s = CrossPoint.ScalarProduct(helper)/helper.NormSquared(); 470 DoLog(1) && (Log() << Verbose(1) << "INFO: Factor s is " << s << "." << endl); 458 471 if ((s < -MYEPSILON) || ((s-1.) > MYEPSILON)) { 459 Log() << Verbose(1) << "INFO: Crosspoint " << CrossPoint << "outside of triangle." << endl; 460 i=4; 461 break; 472 DoLog(1) && (Log() << Verbose(1) << "INFO: Crosspoint " << CrossPoint << "outside of triangle." << endl); 473 return false; 462 474 } 463 475 i++; 464 } else 465 break; 466 } while (i<3); 467 if (i==3) { 468 Log() << Verbose(1) << "INFO: Crosspoint " << CrossPoint << " inside of triangle." << endl; 476 } while (i < 3); 477 DoLog(1) && (Log() << Verbose(1) << "INFO: Crosspoint " << CrossPoint << " inside of triangle." << endl); 469 478 return true; 470 } else { 471 Log() << Verbose(1) << "INFO: Crosspoint " << CrossPoint << " outside of triangle." << endl; 479 } 480 catch (MathException &excp) { 481 Log() << Verbose(1) << excp; 482 DoeLog(1) && (eLog() << Verbose(1) << "Alas! Intersection with plane failed - at least numerically - the intersection is not on the plane!" << endl); 472 483 return false; 473 484 } 474 }; 475 476 /** Finds the point on the triangle \a *BTS through which the line defined by \a *MolCenter and \a *x crosses. 477 * We call Vector::GetIntersectionWithPlane() to receive the intersection point with the plane 485 } 486 ; 487 488 /** Finds the point on the triangle to the point \a *x. 489 * We call Vector::GetIntersectionWithPlane() with \a * and the center of the triangle to receive an intersection point. 490 * Then we check the in-plane part (the part projected down onto plane). We check whether it crosses one of the 491 * boundary lines. If it does, we return this intersection as closest point, otherwise the projected point down. 478 492 * Thus we test if it's really on the plane and whether it's inside the triangle on the plane or not. 479 493 * The latter is done as follows: We calculate the cross point of one of the triangle's baseline with the line … … 490 504 491 505 // 1. get intersection with plane 492 Log() << Verbose(1) << "INFO: Looking for closest point of triangle " << *this << " to " << *x << "." << endl;506 DoLog(1) && (Log() << Verbose(1) << "INFO: Looking for closest point of triangle " << *this << " to " << *x << "." << endl); 493 507 GetCenter(&Direction); 494 if (!ClosestPoint->GetIntersectionWithPlane(&NormalVector, endpoints[0]->node->node, x, &Direction)) { 495 ClosestPoint->CopyVector(x); 508 try { 509 Line l = makeLineThrough(*x, Direction); 510 *ClosestPoint = Plane(NormalVector, *(endpoints[0]->node->node)).GetIntersection(l); 511 } 512 catch (MathException &excp) { 513 (*ClosestPoint) = (*x); 496 514 } 497 515 498 516 // 2. Calculate in plane part of line (x, intersection) 499 Vector InPlane; 500 InPlane.CopyVector(x); 501 InPlane.SubtractVector(ClosestPoint); // points from plane intersection to straight-down point 502 InPlane.ProjectOntoPlane(&NormalVector); 503 InPlane.AddVector(ClosestPoint); 504 505 Log() << Verbose(2) << "INFO: Triangle is " << *this << "." << endl; 506 Log() << Verbose(2) << "INFO: Line is from " << Direction << " to " << *x << "." << endl; 507 Log() << Verbose(2) << "INFO: In-plane part is " << InPlane << "." << endl; 517 Vector InPlane = (*x) - (*ClosestPoint); // points from plane intersection to straight-down point 518 InPlane.ProjectOntoPlane(NormalVector); 519 InPlane += *ClosestPoint; 520 521 DoLog(2) && (Log() << Verbose(2) << "INFO: Triangle is " << *this << "." << endl); 522 DoLog(2) && (Log() << Verbose(2) << "INFO: Line is from " << Direction << " to " << *x << "." << endl); 523 DoLog(2) && (Log() << Verbose(2) << "INFO: In-plane part is " << InPlane << "." << endl); 508 524 509 525 // Calculate cross point between one baseline and the desired point such that distance is shortest … … 513 529 Vector CrossPoint[3]; 514 530 Vector helper; 515 for (int i =0;i<3;i++) {531 for (int i = 0; i < 3; i++) { 516 532 // treat direction of line as normal of a (cut)plane and the desired point x as the plane offset, the intersect line with point 517 Direction.CopyVector(endpoints[(i+1)%3]->node->node); 518 Direction.SubtractVector(endpoints[i%3]->node->node); 533 Direction = (*endpoints[(i+1)%3]->node->node) - (*endpoints[i%3]->node->node); 519 534 // calculate intersection, line can never be parallel to Direction (is the same vector as PlaneNormal); 520 CrossPoint[i].GetIntersectionWithPlane(&Direction, &InPlane, endpoints[i%3]->node->node, endpoints[(i+1)%3]->node->node);521 Cross Direction[i].CopyVector(&CrossPoint[i]);522 CrossDirection[i] .SubtractVector(&InPlane);523 CrossPoint[i] .SubtractVector(endpoints[i%3]->node->node); // cross point was returned as absolute vector524 const double s = CrossPoint[i].ScalarProduct( &Direction)/Direction.NormSquared();525 Log() << Verbose(2) << "INFO: Factor s is " << s << "." << endl;535 Line l = makeLineThrough(*(endpoints[i%3]->node->node), *(endpoints[(i+1)%3]->node->node)); 536 CrossPoint[i] = Plane(Direction, InPlane).GetIntersection(l); 537 CrossDirection[i] = CrossPoint[i] - InPlane; 538 CrossPoint[i] -= (*endpoints[i%3]->node->node); // cross point was returned as absolute vector 539 const double s = CrossPoint[i].ScalarProduct(Direction)/Direction.NormSquared(); 540 DoLog(2) && (Log() << Verbose(2) << "INFO: Factor s is " << s << "." << endl); 526 541 if ((s >= -MYEPSILON) && ((s-1.) <= MYEPSILON)) { 527 CrossPoint[i].AddVector(endpoints[i%3]->node->node); // make cross point absolute again528 Log() << Verbose(2) << "INFO: Crosspoint is " << CrossPoint[i] << ", intersecting BoundaryLine between " << *endpoints[i%3]->node->node << " and " << *endpoints[(i+1)%3]->node->node << "." << endl;529 const double distance = CrossPoint[i].DistanceSquared( x);542 CrossPoint[i] += (*endpoints[i%3]->node->node); // make cross point absolute again 543 DoLog(2) && (Log() << Verbose(2) << "INFO: Crosspoint is " << CrossPoint[i] << ", intersecting BoundaryLine between " << *endpoints[i % 3]->node->node << " and " << *endpoints[(i + 1) % 3]->node->node << "." << endl); 544 const double distance = CrossPoint[i].DistanceSquared(*x); 530 545 if ((ShortestDistance < 0.) || (ShortestDistance > distance)) { 531 546 ShortestDistance = distance; 532 ClosestPoint->CopyVector(&CrossPoint[i]);547 (*ClosestPoint) = CrossPoint[i]; 533 548 } 534 549 } else … … 536 551 } 537 552 InsideFlag = true; 538 for (int i=0;i<3;i++) { 539 const double sign = CrossDirection[i].ScalarProduct(&CrossDirection[(i+1)%3]); 540 const double othersign = CrossDirection[i].ScalarProduct(&CrossDirection[(i+2)%3]);; 541 if ((sign > -MYEPSILON) && (othersign > -MYEPSILON)) // have different sign 553 for (int i = 0; i < 3; i++) { 554 const double sign = CrossDirection[i].ScalarProduct(CrossDirection[(i + 1) % 3]); 555 const double othersign = CrossDirection[i].ScalarProduct(CrossDirection[(i + 2) % 3]); 556 557 if ((sign > -MYEPSILON) && (othersign > -MYEPSILON)) // have different sign 542 558 InsideFlag = false; 543 559 } 544 560 if (InsideFlag) { 545 ClosestPoint->CopyVector(&InPlane);546 ShortestDistance = InPlane.DistanceSquared( x);547 } else { // also check endnodes548 for (int i =0;i<3;i++) {549 const double distance = x->DistanceSquared( endpoints[i]->node->node);561 (*ClosestPoint) = InPlane; 562 ShortestDistance = InPlane.DistanceSquared(*x); 563 } else { // also check endnodes 564 for (int i = 0; i < 3; i++) { 565 const double distance = x->DistanceSquared(*endpoints[i]->node->node); 550 566 if ((ShortestDistance < 0.) || (ShortestDistance > distance)) { 551 567 ShortestDistance = distance; 552 ClosestPoint->CopyVector(endpoints[i]->node->node);568 (*ClosestPoint) = (*endpoints[i]->node->node); 553 569 } 554 570 } 555 571 } 556 Log() << Verbose(1) << "INFO: Closest Point is " << *ClosestPoint << " with shortest squared distance is " << ShortestDistance << "." << endl;572 DoLog(1) && (Log() << Verbose(1) << "INFO: Closest Point is " << *ClosestPoint << " with shortest squared distance is " << ShortestDistance << "." << endl); 557 573 return ShortestDistance; 558 }; 574 } 575 ; 559 576 560 577 /** Checks whether lines is any of the three boundary lines this triangle contains. … … 564 581 bool BoundaryTriangleSet::ContainsBoundaryLine(const BoundaryLineSet * const line) const 565 582 { 566 Info FunctionInfo(__func__);567 for (int i=0;i<3;i++)583 Info FunctionInfo(__func__); 584 for (int i = 0; i < 3; i++) 568 585 if (line == lines[i]) 569 586 return true; 570 587 return false; 571 }; 588 } 589 ; 572 590 573 591 /** Checks whether point is any of the three endpoints this triangle contains. … … 577 595 bool BoundaryTriangleSet::ContainsBoundaryPoint(const BoundaryPointSet * const point) const 578 596 { 579 Info FunctionInfo(__func__);580 for (int i=0;i<3;i++)597 Info FunctionInfo(__func__); 598 for (int i = 0; i < 3; i++) 581 599 if (point == endpoints[i]) 582 600 return true; 583 601 return false; 584 }; 602 } 603 ; 585 604 586 605 /** Checks whether point is any of the three endpoints this triangle contains. … … 590 609 bool BoundaryTriangleSet::ContainsBoundaryPoint(const TesselPoint * const point) const 591 610 { 592 Info FunctionInfo(__func__);593 for (int i=0;i<3;i++)611 Info FunctionInfo(__func__); 612 for (int i = 0; i < 3; i++) 594 613 if (point == endpoints[i]->node) 595 614 return true; 596 615 return false; 597 }; 616 } 617 ; 598 618 599 619 /** Checks whether three given \a *Points coincide with triangle's endpoints. … … 603 623 bool BoundaryTriangleSet::IsPresentTupel(const BoundaryPointSet * const Points[3]) const 604 624 { 605 Info FunctionInfo(__func__); 606 Log() << Verbose(1) << "INFO: Checking " << Points[0] << "," << Points[1] << "," << Points[2] << " against " << endpoints[0] << "," << endpoints[1] << "," << endpoints[2] << "." << endl; 607 return (((endpoints[0] == Points[0]) 608 || (endpoints[0] == Points[1]) 609 || (endpoints[0] == Points[2]) 610 ) && ( 611 (endpoints[1] == Points[0]) 612 || (endpoints[1] == Points[1]) 613 || (endpoints[1] == Points[2]) 614 ) && ( 615 (endpoints[2] == Points[0]) 616 || (endpoints[2] == Points[1]) 617 || (endpoints[2] == Points[2]) 618 619 )); 620 }; 625 Info FunctionInfo(__func__); 626 DoLog(1) && (Log() << Verbose(1) << "INFO: Checking " << Points[0] << "," << Points[1] << "," << Points[2] << " against " << endpoints[0] << "," << endpoints[1] << "," << endpoints[2] << "." << endl); 627 return (((endpoints[0] == Points[0]) || (endpoints[0] == Points[1]) || (endpoints[0] == Points[2])) && ((endpoints[1] == Points[0]) || (endpoints[1] == Points[1]) || (endpoints[1] == Points[2])) && ((endpoints[2] == Points[0]) || (endpoints[2] == Points[1]) || (endpoints[2] == Points[2]) 628 629 )); 630 } 631 ; 621 632 622 633 /** Checks whether three given \a *Points coincide with triangle's endpoints. … … 626 637 bool BoundaryTriangleSet::IsPresentTupel(const BoundaryTriangleSet * const T) const 627 638 { 628 Info FunctionInfo(__func__); 629 return (((endpoints[0] == T->endpoints[0]) 630 || (endpoints[0] == T->endpoints[1]) 631 || (endpoints[0] == T->endpoints[2]) 632 ) && ( 633 (endpoints[1] == T->endpoints[0]) 634 || (endpoints[1] == T->endpoints[1]) 635 || (endpoints[1] == T->endpoints[2]) 636 ) && ( 637 (endpoints[2] == T->endpoints[0]) 638 || (endpoints[2] == T->endpoints[1]) 639 || (endpoints[2] == T->endpoints[2]) 640 641 )); 642 }; 639 Info FunctionInfo(__func__); 640 return (((endpoints[0] == T->endpoints[0]) || (endpoints[0] == T->endpoints[1]) || (endpoints[0] == T->endpoints[2])) && ((endpoints[1] == T->endpoints[0]) || (endpoints[1] == T->endpoints[1]) || (endpoints[1] == T->endpoints[2])) && ((endpoints[2] == T->endpoints[0]) || (endpoints[2] == T->endpoints[1]) || (endpoints[2] == T->endpoints[2]) 641 642 )); 643 } 644 ; 643 645 644 646 /** Returns the endpoint which is not contained in the given \a *line. … … 648 650 class BoundaryPointSet *BoundaryTriangleSet::GetThirdEndpoint(const BoundaryLineSet * const line) const 649 651 { 650 Info FunctionInfo(__func__);652 Info FunctionInfo(__func__); 651 653 // sanity check 652 654 if (!ContainsBoundaryLine(line)) 653 655 return NULL; 654 for (int i=0;i<3;i++)656 for (int i = 0; i < 3; i++) 655 657 if (!line->ContainsBoundaryPoint(endpoints[i])) 656 658 return endpoints[i]; 657 659 // actually, that' impossible :) 658 660 return NULL; 659 }; 661 } 662 ; 660 663 661 664 /** Calculates the center point of the triangle. … … 665 668 void BoundaryTriangleSet::GetCenter(Vector * const center) const 666 669 { 667 Info FunctionInfo(__func__);670 Info FunctionInfo(__func__); 668 671 center->Zero(); 669 for(int i=0;i<3;i++) 670 center->AddVector(endpoints[i]->node->node); 671 center->Scale(1./3.); 672 Log() << Verbose(1) << "INFO: Center is at " << *center << "." << endl; 672 for (int i = 0; i < 3; i++) 673 (*center) += (*endpoints[i]->node->node); 674 center->Scale(1. / 3.); 675 DoLog(1) && (Log() << Verbose(1) << "INFO: Center is at " << *center << "." << endl); 676 } 677 678 /** 679 * gets the Plane defined by the three triangle Basepoints 680 */ 681 Plane BoundaryTriangleSet::getPlane() const{ 682 ASSERT(endpoints[0] && endpoints[1] && endpoints[2], "Triangle not fully defined"); 683 684 return Plane(*endpoints[0]->node->node, 685 *endpoints[1]->node->node, 686 *endpoints[2]->node->node); 687 } 688 689 Vector BoundaryTriangleSet::getEndpoint(int i) const{ 690 ASSERT(i>=0 && i<3,"Index of Endpoint out of Range"); 691 692 return *endpoints[i]->node->node; 693 } 694 695 string BoundaryTriangleSet::getEndpointName(int i) const{ 696 ASSERT(i>=0 && i<3,"Index of Endpoint out of Range"); 697 698 return endpoints[i]->node->getName(); 673 699 } 674 700 … … 679 705 ostream &operator <<(ostream &ost, const BoundaryTriangleSet &a) 680 706 { 681 ost << "[" << a.Nr << "|" << a. endpoints[0]->node->Name << "," << a.endpoints[1]->node->Name << "," << a.endpoints[2]->node->Name<< "]";682 // ost << "[" << a.Nr << "|" << a.endpoints[0]->node->Name << " at " << *a.endpoints[0]->node->node << ","683 // << a.endpoints[1]->node->Name << " at " << *a.endpoints[1]->node->node << "," << a.endpoints[2]->node->Name << " at " << *a.endpoints[2]->node->node << "]";707 ost << "[" << a.Nr << "|" << a.getEndpointName(0) << "," << a.getEndpointName(1) << "," << a.getEndpointName(2) << "]"; 708 // ost << "[" << a.Nr << "|" << a.endpoints[0]->node->Name << " at " << *a.endpoints[0]->node->node << "," 709 // << a.endpoints[1]->node->Name << " at " << *a.endpoints[1]->node->node << "," << a.endpoints[2]->node->Name << " at " << *a.endpoints[2]->node->node << "]"; 684 710 return ost; 685 }; 711 } 712 ; 686 713 687 714 // ======================================== Polygons on Boundary ================================= … … 693 720 { 694 721 Info FunctionInfo(__func__); 695 }; 722 } 723 ; 696 724 697 725 /** Destructor of BoundaryPolygonSet. … … 703 731 Info FunctionInfo(__func__); 704 732 endpoints.clear(); 705 Log() << Verbose(1) << "Erasing polygon Nr." << Nr << " itself." << endl; 706 }; 733 DoLog(1) && (Log() << Verbose(1) << "Erasing polygon Nr." << Nr << " itself." << endl); 734 } 735 ; 707 736 708 737 /** Calculates the normal vector for this triangle. … … 718 747 Vector *TotalNormal = new Vector; 719 748 PointSet::const_iterator Runner[3]; 720 for (int i =0;i<3; i++) {749 for (int i = 0; i < 3; i++) { 721 750 Runner[i] = endpoints.begin(); 722 for (int j = 0; j <i; j++) { // go as much further751 for (int j = 0; j < i; j++) { // go as much further 723 752 Runner[i]++; 724 753 if (Runner[i] == endpoints.end()) { 725 eLog() << Verbose(0) << "There are less than three endpoints in the polygon!" << endl;754 DoeLog(0) && (eLog() << Verbose(0) << "There are less than three endpoints in the polygon!" << endl); 726 755 performCriticalExit(); 727 756 } … … 729 758 } 730 759 TotalNormal->Zero(); 731 int counter=0; 732 for (; Runner[2] != endpoints.end(); ) { 733 TemporaryNormal.MakeNormalVector((*Runner[0])->node->node, (*Runner[1])->node->node, (*Runner[2])->node->node); 734 for (int i=0;i<3;i++) // increase each of them 760 int counter = 0; 761 for (; Runner[2] != endpoints.end();) { 762 TemporaryNormal = Plane(*((*Runner[0])->node->node), 763 *((*Runner[1])->node->node), 764 *((*Runner[2])->node->node)).getNormal(); 765 for (int i = 0; i < 3; i++) // increase each of them 735 766 Runner[i]++; 736 TotalNormal->AddVector(&TemporaryNormal);737 } 738 TotalNormal->Scale(1. /(double)counter);767 (*TotalNormal) += TemporaryNormal; 768 } 769 TotalNormal->Scale(1. / (double) counter); 739 770 740 771 // make it always point inward (any offset vector onto plane projected onto normal vector suffices) 741 if (TotalNormal->ScalarProduct( &OtherVector) > 0.)772 if (TotalNormal->ScalarProduct(OtherVector) > 0.) 742 773 TotalNormal->Scale(-1.); 743 Log() << Verbose(1) << "Normal Vector is " << *TotalNormal << "." << endl;774 DoLog(1) && (Log() << Verbose(1) << "Normal Vector is " << *TotalNormal << "." << endl); 744 775 745 776 return TotalNormal; 746 }; 777 } 778 ; 747 779 748 780 /** Calculates the center point of the triangle. … … 756 788 int counter = 0; 757 789 for(PointSet::const_iterator Runner = endpoints.begin(); Runner != endpoints.end(); Runner++) { 758 center->AddVector((*Runner)->node->node);790 (*center) += (*(*Runner)->node->node); 759 791 counter++; 760 792 } 761 center->Scale(1. /(double)counter);762 Log() << Verbose(1) << "Center is at " << *center << "." << endl;793 center->Scale(1. / (double) counter); 794 DoLog(1) && (Log() << Verbose(1) << "Center is at " << *center << "." << endl); 763 795 } 764 796 … … 771 803 Info FunctionInfo(__func__); 772 804 return ContainsPresentTupel(triangle->endpoints, 3); 773 }; 805 } 806 ; 774 807 775 808 /** Checks whether the polygons contains both endpoints of the line. … … 781 814 Info FunctionInfo(__func__); 782 815 return ContainsPresentTupel(line->endpoints, 2); 783 }; 816 } 817 ; 784 818 785 819 /** Checks whether point is any of the three endpoints this triangle contains. … … 790 824 { 791 825 Info FunctionInfo(__func__); 792 for (PointSet::const_iterator Runner = endpoints.begin(); Runner != endpoints.end(); Runner++) {793 Log() << Verbose(0) << "Checking against " << **Runner << endl;826 for (PointSet::const_iterator Runner = endpoints.begin(); Runner != endpoints.end(); Runner++) { 827 DoLog(0) && (Log() << Verbose(0) << "Checking against " << **Runner << endl); 794 828 if (point == (*Runner)) { 795 Log() << Verbose(0) << " Contained." << endl;829 DoLog(0) && (Log() << Verbose(0) << " Contained." << endl); 796 830 return true; 797 831 } 798 832 } 799 Log() << Verbose(0) << " Not contained." << endl;833 DoLog(0) && (Log() << Verbose(0) << " Not contained." << endl); 800 834 return false; 801 }; 835 } 836 ; 802 837 803 838 /** Checks whether point is any of the three endpoints this triangle contains. … … 808 843 { 809 844 Info FunctionInfo(__func__); 810 for (PointSet::const_iterator Runner = endpoints.begin(); Runner != endpoints.end(); Runner++)845 for (PointSet::const_iterator Runner = endpoints.begin(); Runner != endpoints.end(); Runner++) 811 846 if (point == (*Runner)->node) { 812 Log() << Verbose(0) << " Contained." << endl;847 DoLog(0) && (Log() << Verbose(0) << " Contained." << endl); 813 848 return true; 814 849 } 815 Log() << Verbose(0) << " Not contained." << endl;850 DoLog(0) && (Log() << Verbose(0) << " Not contained." << endl); 816 851 return false; 817 }; 852 } 853 ; 818 854 819 855 /** Checks whether given array of \a *Points coincide with polygons's endpoints. … … 826 862 Info FunctionInfo(__func__); 827 863 int counter = 0; 828 Log() << Verbose(1) << "Polygon is " << *this << endl;829 for (int i=0;i<dim;i++) {830 Log() << Verbose(1) << " Testing endpoint " << *Points[i] << endl;864 DoLog(1) && (Log() << Verbose(1) << "Polygon is " << *this << endl); 865 for (int i = 0; i < dim; i++) { 866 DoLog(1) && (Log() << Verbose(1) << " Testing endpoint " << *Points[i] << endl); 831 867 if (ContainsBoundaryPoint(Points[i])) { 832 868 counter++; … … 838 874 else 839 875 return false; 840 }; 876 } 877 ; 841 878 842 879 /** Checks whether given PointList coincide with polygons's endpoints. … … 848 885 Info FunctionInfo(__func__); 849 886 size_t counter = 0; 850 Log() << Verbose(1) << "Polygon is " << *this << endl;851 for (PointSet::const_iterator Runner = endpoints.begin(); Runner != endpoints.end(); Runner++) {852 Log() << Verbose(1) << " Testing endpoint " << **Runner << endl;887 DoLog(1) && (Log() << Verbose(1) << "Polygon is " << *this << endl); 888 for (PointSet::const_iterator Runner = endpoints.begin(); Runner != endpoints.end(); Runner++) { 889 DoLog(1) && (Log() << Verbose(1) << " Testing endpoint " << **Runner << endl); 853 890 if (ContainsBoundaryPoint(*Runner)) 854 891 counter++; … … 859 896 else 860 897 return false; 861 }; 898 } 899 ; 862 900 863 901 /** Checks whether given set of \a *Points coincide with polygons's endpoints. … … 867 905 bool BoundaryPolygonSet::ContainsPresentTupel(const BoundaryPolygonSet * const P) const 868 906 { 869 return ContainsPresentTupel((const PointSet)P->endpoints); 870 }; 907 return ContainsPresentTupel((const PointSet) P->endpoints); 908 } 909 ; 871 910 872 911 /** Gathers all the endpoints' triangles in a unique set. … … 876 915 { 877 916 Info FunctionInfo(__func__); 878 pair <TriangleSet::iterator, bool> Tester;917 pair<TriangleSet::iterator, bool> Tester; 879 918 TriangleSet *triangles = new TriangleSet; 880 919 881 for (PointSet::const_iterator Runner = endpoints.begin(); Runner != endpoints.end(); Runner++)882 for (LineMap::const_iterator Walker = (*Runner)->lines.begin(); Walker != (*Runner)->lines.end(); Walker++)883 for (TriangleMap::const_iterator Sprinter = (Walker->second)->triangles.begin(); Sprinter != (Walker->second)->triangles.end(); Sprinter++) {920 for (PointSet::const_iterator Runner = endpoints.begin(); Runner != endpoints.end(); Runner++) 921 for (LineMap::const_iterator Walker = (*Runner)->lines.begin(); Walker != (*Runner)->lines.end(); Walker++) 922 for (TriangleMap::const_iterator Sprinter = (Walker->second)->triangles.begin(); Sprinter != (Walker->second)->triangles.end(); Sprinter++) { 884 923 //Log() << Verbose(0) << " Testing triangle " << *(Sprinter->second) << endl; 885 924 if (ContainsBoundaryTriangle(Sprinter->second)) { 886 925 Tester = triangles->insert(Sprinter->second); 887 926 if (Tester.second) 888 Log() << Verbose(0) << "Adding triangle " << *(Sprinter->second) << endl;927 DoLog(0) && (Log() << Verbose(0) << "Adding triangle " << *(Sprinter->second) << endl); 889 928 } 890 929 } 891 930 892 Log() << Verbose(1) << "The Polygon of " << endpoints.size() << " endpoints has " << triangles->size() << " unique triangles in total." << endl;931 DoLog(1) && (Log() << Verbose(1) << "The Polygon of " << endpoints.size() << " endpoints has " << triangles->size() << " unique triangles in total." << endl); 893 932 return triangles; 894 }; 933 } 934 ; 895 935 896 936 /** Fills the endpoints of this polygon from the triangles attached to \a *line. … … 901 941 { 902 942 Info FunctionInfo(__func__); 903 pair <PointSet::iterator, bool> Tester;943 pair<PointSet::iterator, bool> Tester; 904 944 if (line == NULL) 905 945 return false; 906 Log() << Verbose(1) << "Filling polygon from line " << *line << endl;907 for (TriangleMap::const_iterator Runner = line->triangles.begin(); Runner != line->triangles.end(); Runner++) {908 for (int i =0;i<3;i++) {946 DoLog(1) && (Log() << Verbose(1) << "Filling polygon from line " << *line << endl); 947 for (TriangleMap::const_iterator Runner = line->triangles.begin(); Runner != line->triangles.end(); Runner++) { 948 for (int i = 0; i < 3; i++) { 909 949 Tester = endpoints.insert((Runner->second)->endpoints[i]); 910 950 if (Tester.second) 911 Log() << Verbose(1) << " Inserting endpoint " << *((Runner->second)->endpoints[i]) << endl;951 DoLog(1) && (Log() << Verbose(1) << " Inserting endpoint " << *((Runner->second)->endpoints[i]) << endl); 912 952 } 913 953 } 914 954 915 955 return true; 916 }; 956 } 957 ; 917 958 918 959 /** output operator for BoundaryPolygonSet. … … 923 964 { 924 965 ost << "[" << a.Nr << "|"; 925 for (PointSet::const_iterator Runner = a.endpoints.begin(); Runner != a.endpoints.end();) {926 ost << (*Runner)->node->Name;927 Runner++;928 if (Runner != a.endpoints.end())929 ost << ",";930 } 931 ost << "]";966 for (PointSet::const_iterator Runner = a.endpoints.begin(); Runner != a.endpoints.end();) { 967 ost << (*Runner)->node->getName(); 968 Runner++; 969 if (Runner != a.endpoints.end()) 970 ost << ","; 971 } 972 ost << "]"; 932 973 return ost; 933 }; 974 } 975 ; 934 976 935 977 // =========================================================== class TESSELPOINT =========================================== … … 942 984 node = NULL; 943 985 nr = -1; 944 Name = NULL; 945 };986 } 987 ; 946 988 947 989 /** Destructor for class TesselPoint. … … 950 992 { 951 993 //Info FunctionInfo(__func__); 952 }; 994 } 995 ; 953 996 954 997 /** Prints LCNode to screen. 955 998 */ 956 ostream & operator << (ostream &ost, const TesselPoint &a)957 { 958 ost << "[" << (a.Name) << "|" << a.Name << " at" << *a.node << "]";999 ostream & operator <<(ostream &ost, const TesselPoint &a) 1000 { 1001 ost << "[" << a.getName() << "|" << *a.node << "]"; 959 1002 return ost; 960 }; 1003 } 1004 ; 961 1005 962 1006 /** Prints LCNode to screen. 963 1007 */ 964 ostream & TesselPoint::operator << (ostream &ost)965 { 966 Info FunctionInfo(__func__);1008 ostream & TesselPoint::operator <<(ostream &ost) 1009 { 1010 Info FunctionInfo(__func__); 967 1011 ost << "[" << (nr) << "|" << this << "]"; 968 1012 return ost; 1013 } 1014 ; 1015 1016 // =========================================================== class POINTCLOUD ============================================ 1017 1018 /** Constructor of class PointCloud. 1019 */ 1020 PointCloud::PointCloud() 1021 { 1022 //Info FunctionInfo(__func__); 1023 } 1024 ; 1025 1026 /** Destructor for class PointCloud. 1027 */ 1028 PointCloud::~PointCloud() 1029 { 1030 //Info FunctionInfo(__func__); 1031 } 1032 ; 1033 1034 // ============================ CandidateForTesselation ============================= 1035 1036 /** Constructor of class CandidateForTesselation. 1037 */ 1038 CandidateForTesselation::CandidateForTesselation(BoundaryLineSet* line) : 1039 BaseLine(line), ThirdPoint(NULL), T(NULL), ShortestAngle(2. * M_PI), OtherShortestAngle(2. * M_PI) 1040 { 1041 Info FunctionInfo(__func__); 1042 } 1043 ; 1044 1045 /** Constructor of class CandidateForTesselation. 1046 */ 1047 CandidateForTesselation::CandidateForTesselation(TesselPoint *candidate, BoundaryLineSet* line, BoundaryPointSet* point, Vector OptCandidateCenter, Vector OtherOptCandidateCenter) : 1048 BaseLine(line), ThirdPoint(point), T(NULL), ShortestAngle(2. * M_PI), OtherShortestAngle(2. * M_PI) 1049 { 1050 Info FunctionInfo(__func__); 1051 OptCenter = OptCandidateCenter; 1052 OtherOptCenter = OtherOptCandidateCenter; 969 1053 }; 970 1054 971 1055 972 // =========================================================== class POINTCLOUD ============================================973 974 /** Constructor of class PointCloud.975 */976 PointCloud::PointCloud()977 {978 //Info FunctionInfo(__func__);979 };980 981 /** Destructor for class PointCloud.982 */983 PointCloud::~PointCloud()984 {985 //Info FunctionInfo(__func__);986 };987 988 // ============================ CandidateForTesselation =============================989 990 /** Constructor of class CandidateForTesselation.991 */992 CandidateForTesselation::CandidateForTesselation (BoundaryLineSet* line) :993 BaseLine(line),994 ShortestAngle(2.*M_PI),995 OtherShortestAngle(2.*M_PI)996 {997 Info FunctionInfo(__func__);998 };999 1000 1001 /** Constructor of class CandidateForTesselation.1002 */1003 CandidateForTesselation::CandidateForTesselation (TesselPoint *candidate, BoundaryLineSet* line, Vector OptCandidateCenter, Vector OtherOptCandidateCenter) :1004 BaseLine(line),1005 ShortestAngle(2.*M_PI),1006 OtherShortestAngle(2.*M_PI)1007 {1008 Info FunctionInfo(__func__);1009 OptCenter.CopyVector(&OptCandidateCenter);1010 OtherOptCenter.CopyVector(&OtherOptCandidateCenter);1011 };1012 1013 1056 /** Destructor for class CandidateForTesselation. 1014 1057 */ 1015 CandidateForTesselation::~CandidateForTesselation() { 1016 BaseLine = NULL; 1017 }; 1058 CandidateForTesselation::~CandidateForTesselation() 1059 { 1060 } 1061 ; 1062 1063 /** Checks validity of a given sphere of a candidate line. 1064 * Sphere must touch all candidates and the baseline endpoints and there must be no other atoms inside. 1065 * \param RADIUS radius of sphere 1066 * \param *LC LinkedCell structure with other atoms 1067 * \return true - sphere is valid, false - sphere contains other points 1068 */ 1069 bool CandidateForTesselation::CheckValidity(const double RADIUS, const LinkedCell *LC) const 1070 { 1071 Info FunctionInfo(__func__); 1072 1073 const double radiusSquared = RADIUS * RADIUS; 1074 list<const Vector *> VectorList; 1075 VectorList.push_back(&OptCenter); 1076 //VectorList.push_back(&OtherOptCenter); // don't check the other (wrong) center 1077 1078 if (!pointlist.empty()) 1079 DoLog(1) && (Log() << Verbose(1) << "INFO: Checking whether sphere contains candidate list and baseline " << *BaseLine->endpoints[0] << "<->" << *BaseLine->endpoints[1] << " only ..." << endl); 1080 else 1081 DoLog(1) && (Log() << Verbose(1) << "INFO: Checking whether sphere with no candidates contains baseline " << *BaseLine->endpoints[0] << "<->" << *BaseLine->endpoints[1] << " only ..." << endl); 1082 // check baseline for OptCenter and OtherOptCenter being on sphere's surface 1083 for (list<const Vector *>::const_iterator VRunner = VectorList.begin(); VRunner != VectorList.end(); ++VRunner) { 1084 for (int i = 0; i < 2; i++) { 1085 const double distance = fabs((*VRunner)->DistanceSquared(*BaseLine->endpoints[i]->node->node) - radiusSquared); 1086 if (distance > HULLEPSILON) { 1087 DoeLog(1) && (eLog() << Verbose(1) << "Endpoint " << *BaseLine->endpoints[i] << " is out of sphere at " << *(*VRunner) << " by " << distance << "." << endl); 1088 return false; 1089 } 1090 } 1091 } 1092 1093 // check Candidates for OptCenter and OtherOptCenter being on sphere's surface 1094 for (TesselPointList::const_iterator Runner = pointlist.begin(); Runner != pointlist.end(); ++Runner) { 1095 const TesselPoint *Walker = *Runner; 1096 for (list<const Vector *>::const_iterator VRunner = VectorList.begin(); VRunner != VectorList.end(); ++VRunner) { 1097 const double distance = fabs((*VRunner)->DistanceSquared(*Walker->node) - radiusSquared); 1098 if (distance > HULLEPSILON) { 1099 DoeLog(1) && (eLog() << Verbose(1) << "Candidate " << *Walker << " is out of sphere at " << *(*VRunner) << " by " << distance << "." << endl); 1100 return false; 1101 } else { 1102 DoLog(1) && (Log() << Verbose(1) << "Candidate " << *Walker << " is inside by " << distance << "." << endl); 1103 } 1104 } 1105 } 1106 1107 DoLog(1) && (Log() << Verbose(1) << "INFO: Checking whether sphere contains no others points ..." << endl); 1108 bool flag = true; 1109 for (list<const Vector *>::const_iterator VRunner = VectorList.begin(); VRunner != VectorList.end(); ++VRunner) { 1110 // get all points inside the sphere 1111 TesselPointList *ListofPoints = LC->GetPointsInsideSphere(RADIUS, (*VRunner)); 1112 1113 DoLog(1) && (Log() << Verbose(1) << "The following atoms are inside sphere at " << OtherOptCenter << ":" << endl); 1114 for (TesselPointList::const_iterator Runner = ListofPoints->begin(); Runner != ListofPoints->end(); ++Runner) 1115 DoLog(1) && (Log() << Verbose(1) << " " << *(*Runner) << " with distance " << (*Runner)->node->distance(OtherOptCenter) << "." << endl); 1116 1117 // remove baseline's endpoints and candidates 1118 for (int i = 0; i < 2; i++) { 1119 DoLog(1) && (Log() << Verbose(1) << "INFO: removing baseline tesselpoint " << *BaseLine->endpoints[i]->node << "." << endl); 1120 ListofPoints->remove(BaseLine->endpoints[i]->node); 1121 } 1122 for (TesselPointList::const_iterator Runner = pointlist.begin(); Runner != pointlist.end(); ++Runner) { 1123 DoLog(1) && (Log() << Verbose(1) << "INFO: removing candidate tesselpoint " << *(*Runner) << "." << endl); 1124 ListofPoints->remove(*Runner); 1125 } 1126 if (!ListofPoints->empty()) { 1127 DoeLog(1) && (eLog() << Verbose(1) << "CheckValidity: There are still " << ListofPoints->size() << " points inside the sphere." << endl); 1128 flag = false; 1129 DoeLog(1) && (eLog() << Verbose(1) << "External atoms inside of sphere at " << *(*VRunner) << ":" << endl); 1130 for (TesselPointList::const_iterator Runner = ListofPoints->begin(); Runner != ListofPoints->end(); ++Runner) 1131 DoeLog(1) && (eLog() << Verbose(1) << " " << *(*Runner) << endl); 1132 } 1133 delete (ListofPoints); 1134 1135 // check with animate_sphere.tcl VMD script 1136 if (ThirdPoint != NULL) { 1137 DoLog(1) && (Log() << Verbose(1) << "Check by: animate_sphere 0 " << BaseLine->endpoints[0]->Nr + 1 << " " << BaseLine->endpoints[1]->Nr + 1 << " " << ThirdPoint->Nr + 1 << " " << RADIUS << " " << OldCenter[0] << " " << OldCenter[1] << " " << OldCenter[2] << " " << (*VRunner)->at(0) << " " << (*VRunner)->at(1) << " " << (*VRunner)->at(2) << endl); 1138 } else { 1139 DoLog(1) && (Log() << Verbose(1) << "Check by: ... missing third point ..." << endl); 1140 DoLog(1) && (Log() << Verbose(1) << "Check by: animate_sphere 0 " << BaseLine->endpoints[0]->Nr + 1 << " " << BaseLine->endpoints[1]->Nr + 1 << " ??? " << RADIUS << " " << OldCenter[0] << " " << OldCenter[1] << " " << OldCenter[2] << " " << (*VRunner)->at(0) << " " << (*VRunner)->at(1) << " " << (*VRunner)->at(2) << endl); 1141 } 1142 } 1143 return flag; 1144 } 1145 ; 1018 1146 1019 1147 /** output operator for CandidateForTesselation. … … 1021 1149 * \param &a boundary line 1022 1150 */ 1023 ostream & operator <<(ostream &ost, const CandidateForTesselation &a)1024 { 1025 ost << "[" << a.BaseLine->Nr << "|" << a.BaseLine->endpoints[0]->node-> Name << "," << a.BaseLine->endpoints[1]->node->Name<< "] with ";1151 ostream & operator <<(ostream &ost, const CandidateForTesselation &a) 1152 { 1153 ost << "[" << a.BaseLine->Nr << "|" << a.BaseLine->endpoints[0]->node->getName() << "," << a.BaseLine->endpoints[1]->node->getName() << "] with "; 1026 1154 if (a.pointlist.empty()) 1027 1155 ost << "no candidate."; … … 1034 1162 for (TesselPointList::const_iterator Runner = a.pointlist.begin(); Runner != a.pointlist.end(); Runner++) 1035 1163 ost << *(*Runner) << " "; 1036 ost << " at angle " << (a.ShortestAngle) << ".";1164 ost << " at angle " << (a.ShortestAngle) << "."; 1037 1165 } 1038 1166 1039 1167 return ost; 1040 } ;1041 1168 } 1169 ; 1042 1170 1043 1171 // =========================================================== class TESSELATION =========================================== … … 1046 1174 */ 1047 1175 Tesselation::Tesselation() : 1048 PointsOnBoundaryCount(0), 1049 LinesOnBoundaryCount(0), 1050 TrianglesOnBoundaryCount(0), 1051 LastTriangle(NULL), 1052 TriangleFilesWritten(0), 1053 InternalPointer(PointsOnBoundary.begin()) 1054 { 1055 Info FunctionInfo(__func__); 1176 PointsOnBoundaryCount(0), LinesOnBoundaryCount(0), TrianglesOnBoundaryCount(0), LastTriangle(NULL), TriangleFilesWritten(0), InternalPointer(PointsOnBoundary.begin()) 1177 { 1178 Info FunctionInfo(__func__); 1056 1179 } 1057 1180 ; … … 1062 1185 Tesselation::~Tesselation() 1063 1186 { 1064 Info FunctionInfo(__func__);1065 Log() << Verbose(0) << "Free'ing TesselStruct ... " << endl;1187 Info FunctionInfo(__func__); 1188 DoLog(0) && (Log() << Verbose(0) << "Free'ing TesselStruct ... " << endl); 1066 1189 for (TriangleMap::iterator runner = TrianglesOnBoundary.begin(); runner != TrianglesOnBoundary.end(); runner++) { 1067 1190 if (runner->second != NULL) { … … 1069 1192 runner->second = NULL; 1070 1193 } else 1071 eLog() << Verbose(1) << "The triangle " << runner->first << " has already been free'd." << endl;1072 } 1073 Log() << Verbose(0) << "This envelope was written to file " << TriangleFilesWritten << " times(s)." << endl;1194 DoeLog(1) && (eLog() << Verbose(1) << "The triangle " << runner->first << " has already been free'd." << endl); 1195 } 1196 DoLog(0) && (Log() << Verbose(0) << "This envelope was written to file " << TriangleFilesWritten << " times(s)." << endl); 1074 1197 } 1075 1198 ; … … 1077 1200 /** PointCloud implementation of GetCenter 1078 1201 * Uses PointsOnBoundary and STL stuff. 1079 */ 1202 */ 1080 1203 Vector * Tesselation::GetCenter(ofstream *out) const 1081 1204 { 1082 Info FunctionInfo(__func__);1083 Vector *Center = new Vector(0., 0.,0.);1084 int num =0;1205 Info FunctionInfo(__func__); 1206 Vector *Center = new Vector(0., 0., 0.); 1207 int num = 0; 1085 1208 for (GoToFirst(); (!IsEnd()); GoToNext()) { 1086 Center->AddVector(GetPoint()->node);1209 (*Center) += (*GetPoint()->node); 1087 1210 num++; 1088 1211 } 1089 Center->Scale(1. /num);1212 Center->Scale(1. / num); 1090 1213 return Center; 1091 }; 1214 } 1215 ; 1092 1216 1093 1217 /** PointCloud implementation of GoPoint 1094 1218 * Uses PointsOnBoundary and STL stuff. 1095 */ 1219 */ 1096 1220 TesselPoint * Tesselation::GetPoint() const 1097 1221 { 1098 Info FunctionInfo(__func__);1222 Info FunctionInfo(__func__); 1099 1223 return (InternalPointer->second->node); 1100 }; 1224 } 1225 ; 1101 1226 1102 1227 /** PointCloud implementation of GetTerminalPoint. 1103 1228 * Uses PointsOnBoundary and STL stuff. 1104 */ 1229 */ 1105 1230 TesselPoint * Tesselation::GetTerminalPoint() const 1106 1231 { 1107 Info FunctionInfo(__func__);1232 Info FunctionInfo(__func__); 1108 1233 PointMap::const_iterator Runner = PointsOnBoundary.end(); 1109 1234 Runner--; 1110 1235 return (Runner->second->node); 1111 }; 1236 } 1237 ; 1112 1238 1113 1239 /** PointCloud implementation of GoToNext. 1114 1240 * Uses PointsOnBoundary and STL stuff. 1115 */ 1241 */ 1116 1242 void Tesselation::GoToNext() const 1117 1243 { 1118 Info FunctionInfo(__func__);1244 Info FunctionInfo(__func__); 1119 1245 if (InternalPointer != PointsOnBoundary.end()) 1120 1246 InternalPointer++; 1121 }; 1247 } 1248 ; 1122 1249 1123 1250 /** PointCloud implementation of GoToPrevious. 1124 1251 * Uses PointsOnBoundary and STL stuff. 1125 */ 1252 */ 1126 1253 void Tesselation::GoToPrevious() const 1127 1254 { 1128 Info FunctionInfo(__func__);1255 Info FunctionInfo(__func__); 1129 1256 if (InternalPointer != PointsOnBoundary.begin()) 1130 1257 InternalPointer--; 1131 }; 1258 } 1259 ; 1132 1260 1133 1261 /** PointCloud implementation of GoToFirst. 1134 1262 * Uses PointsOnBoundary and STL stuff. 1135 */ 1263 */ 1136 1264 void Tesselation::GoToFirst() const 1137 1265 { 1138 Info FunctionInfo(__func__);1266 Info FunctionInfo(__func__); 1139 1267 InternalPointer = PointsOnBoundary.begin(); 1140 }; 1268 } 1269 ; 1141 1270 1142 1271 /** PointCloud implementation of GoToLast. … … 1145 1274 void Tesselation::GoToLast() const 1146 1275 { 1147 Info FunctionInfo(__func__);1276 Info FunctionInfo(__func__); 1148 1277 InternalPointer = PointsOnBoundary.end(); 1149 1278 InternalPointer--; 1150 }; 1279 } 1280 ; 1151 1281 1152 1282 /** PointCloud implementation of IsEmpty. 1153 1283 * Uses PointsOnBoundary and STL stuff. 1154 */ 1284 */ 1155 1285 bool Tesselation::IsEmpty() const 1156 1286 { 1157 Info FunctionInfo(__func__);1287 Info FunctionInfo(__func__); 1158 1288 return (PointsOnBoundary.empty()); 1159 }; 1289 } 1290 ; 1160 1291 1161 1292 /** PointCloud implementation of IsLast. 1162 1293 * Uses PointsOnBoundary and STL stuff. 1163 */ 1294 */ 1164 1295 bool Tesselation::IsEnd() const 1165 1296 { 1166 Info FunctionInfo(__func__);1297 Info FunctionInfo(__func__); 1167 1298 return (InternalPointer == PointsOnBoundary.end()); 1168 } ;1169 1299 } 1300 ; 1170 1301 1171 1302 /** Gueses first starting triangle of the convex envelope. … … 1176 1307 void Tesselation::GuessStartingTriangle() 1177 1308 { 1178 Info FunctionInfo(__func__);1309 Info FunctionInfo(__func__); 1179 1310 // 4b. create a starting triangle 1180 1311 // 4b1. create all distances … … 1186 1317 1187 1318 // with A chosen, take each pair B,C and sort 1188 if (A != PointsOnBoundary.end()) 1189 { 1190 B = A; 1191 B++; 1192 for (; B != PointsOnBoundary.end(); B++) 1193 { 1194 C = B; 1195 C++; 1196 for (; C != PointsOnBoundary.end(); C++) 1197 { 1198 tmp = A->second->node->node->DistanceSquared(B->second->node->node); 1199 distance = tmp * tmp; 1200 tmp = A->second->node->node->DistanceSquared(C->second->node->node); 1201 distance += tmp * tmp; 1202 tmp = B->second->node->node->DistanceSquared(C->second->node->node); 1203 distance += tmp * tmp; 1204 DistanceMMap.insert(DistanceMultiMapPair(distance, pair<PointMap::iterator, PointMap::iterator> (B, C))); 1205 } 1206 } 1207 } 1319 if (A != PointsOnBoundary.end()) { 1320 B = A; 1321 B++; 1322 for (; B != PointsOnBoundary.end(); B++) { 1323 C = B; 1324 C++; 1325 for (; C != PointsOnBoundary.end(); C++) { 1326 tmp = A->second->node->node->DistanceSquared(*B->second->node->node); 1327 distance = tmp * tmp; 1328 tmp = A->second->node->node->DistanceSquared(*C->second->node->node); 1329 distance += tmp * tmp; 1330 tmp = B->second->node->node->DistanceSquared(*C->second->node->node); 1331 distance += tmp * tmp; 1332 DistanceMMap.insert(DistanceMultiMapPair(distance, pair<PointMap::iterator, PointMap::iterator> (B, C))); 1333 } 1334 } 1335 } 1208 1336 // // listing distances 1209 1337 // Log() << Verbose(1) << "Listing DistanceMMap:"; … … 1215 1343 // 1. we take from the smallest sum of squared distance as the base line BC (with peak A) onward as the triangle candidate 1216 1344 DistanceMultiMap::iterator baseline = DistanceMMap.begin(); 1217 for (; baseline != DistanceMMap.end(); baseline++) 1218 { 1219 // we take from the smallest sum of squared distance as the base line BC (with peak A) onward as the triangle candidate 1220 // 2. next, we have to check whether all points reside on only one side of the triangle 1221 // 3. construct plane vector 1222 PlaneVector.MakeNormalVector(A->second->node->node, 1223 baseline->second.first->second->node->node, 1224 baseline->second.second->second->node->node); 1225 Log() << Verbose(2) << "Plane vector of candidate triangle is " << PlaneVector << endl; 1226 // 4. loop over all points 1227 double sign = 0.; 1228 PointMap::iterator checker = PointsOnBoundary.begin(); 1229 for (; checker != PointsOnBoundary.end(); checker++) 1230 { 1231 // (neglecting A,B,C) 1232 if ((checker == A) || (checker == baseline->second.first) || (checker 1233 == baseline->second.second)) 1234 continue; 1235 // 4a. project onto plane vector 1236 TrialVector.CopyVector(checker->second->node->node); 1237 TrialVector.SubtractVector(A->second->node->node); 1238 distance = TrialVector.ScalarProduct(&PlaneVector); 1239 if (fabs(distance) < 1e-4) // we need to have a small epsilon around 0 which is still ok 1240 continue; 1241 Log() << Verbose(2) << "Projection of " << checker->second->node->Name << " yields distance of " << distance << "." << endl; 1242 tmp = distance / fabs(distance); 1243 // 4b. Any have different sign to than before? (i.e. would lie outside convex hull with this starting triangle) 1244 if ((sign != 0) && (tmp != sign)) 1245 { 1246 // 4c. If so, break 4. loop and continue with next candidate in 1. loop 1247 Log() << Verbose(2) << "Current candidates: " 1248 << A->second->node->Name << "," 1249 << baseline->second.first->second->node->Name << "," 1250 << baseline->second.second->second->node->Name << " leaves " 1251 << checker->second->node->Name << " outside the convex hull." 1252 << endl; 1253 break; 1254 } 1255 else 1256 { // note the sign for later 1257 Log() << Verbose(2) << "Current candidates: " 1258 << A->second->node->Name << "," 1259 << baseline->second.first->second->node->Name << "," 1260 << baseline->second.second->second->node->Name << " leave " 1261 << checker->second->node->Name << " inside the convex hull." 1262 << endl; 1263 sign = tmp; 1264 } 1265 // 4d. Check whether the point is inside the triangle (check distance to each node 1266 tmp = checker->second->node->node->DistanceSquared(A->second->node->node); 1267 int innerpoint = 0; 1268 if ((tmp < A->second->node->node->DistanceSquared( 1269 baseline->second.first->second->node->node)) && (tmp 1270 < A->second->node->node->DistanceSquared( 1271 baseline->second.second->second->node->node))) 1272 innerpoint++; 1273 tmp = checker->second->node->node->DistanceSquared( 1274 baseline->second.first->second->node->node); 1275 if ((tmp < baseline->second.first->second->node->node->DistanceSquared( 1276 A->second->node->node)) && (tmp 1277 < baseline->second.first->second->node->node->DistanceSquared( 1278 baseline->second.second->second->node->node))) 1279 innerpoint++; 1280 tmp = checker->second->node->node->DistanceSquared( 1281 baseline->second.second->second->node->node); 1282 if ((tmp < baseline->second.second->second->node->node->DistanceSquared( 1283 baseline->second.first->second->node->node)) && (tmp 1284 < baseline->second.second->second->node->node->DistanceSquared( 1285 A->second->node->node))) 1286 innerpoint++; 1287 // 4e. If so, break 4. loop and continue with next candidate in 1. loop 1288 if (innerpoint == 3) 1289 break; 1290 } 1291 // 5. come this far, all on same side? Then break 1. loop and construct triangle 1292 if (checker == PointsOnBoundary.end()) 1293 { 1294 Log() << Verbose(2) << "Looks like we have a candidate!" << endl; 1295 break; 1296 } 1297 } 1298 if (baseline != DistanceMMap.end()) 1299 { 1300 BPS[0] = baseline->second.first->second; 1301 BPS[1] = baseline->second.second->second; 1302 BLS[0] = new class BoundaryLineSet(BPS, LinesOnBoundaryCount); 1303 BPS[0] = A->second; 1304 BPS[1] = baseline->second.second->second; 1305 BLS[1] = new class BoundaryLineSet(BPS, LinesOnBoundaryCount); 1306 BPS[0] = baseline->second.first->second; 1307 BPS[1] = A->second; 1308 BLS[2] = new class BoundaryLineSet(BPS, LinesOnBoundaryCount); 1309 1310 // 4b3. insert created triangle 1311 BTS = new class BoundaryTriangleSet(BLS, TrianglesOnBoundaryCount); 1312 TrianglesOnBoundary.insert(TrianglePair(TrianglesOnBoundaryCount, BTS)); 1313 TrianglesOnBoundaryCount++; 1314 for (int i = 0; i < NDIM; i++) 1315 { 1316 LinesOnBoundary.insert(LinePair(LinesOnBoundaryCount, BTS->lines[i])); 1317 LinesOnBoundaryCount++; 1318 } 1319 1320 Log() << Verbose(1) << "Starting triangle is " << *BTS << "." << endl; 1321 } 1322 else 1323 { 1324 eLog() << Verbose(0) << "No starting triangle found." << endl; 1325 } 1345 for (; baseline != DistanceMMap.end(); baseline++) { 1346 // we take from the smallest sum of squared distance as the base line BC (with peak A) onward as the triangle candidate 1347 // 2. next, we have to check whether all points reside on only one side of the triangle 1348 // 3. construct plane vector 1349 PlaneVector = Plane(*A->second->node->node, 1350 *baseline->second.first->second->node->node, 1351 *baseline->second.second->second->node->node).getNormal(); 1352 DoLog(2) && (Log() << Verbose(2) << "Plane vector of candidate triangle is " << PlaneVector << endl); 1353 // 4. loop over all points 1354 double sign = 0.; 1355 PointMap::iterator checker = PointsOnBoundary.begin(); 1356 for (; checker != PointsOnBoundary.end(); checker++) { 1357 // (neglecting A,B,C) 1358 if ((checker == A) || (checker == baseline->second.first) || (checker == baseline->second.second)) 1359 continue; 1360 // 4a. project onto plane vector 1361 TrialVector = (*checker->second->node->node); 1362 TrialVector.SubtractVector(*A->second->node->node); 1363 distance = TrialVector.ScalarProduct(PlaneVector); 1364 if (fabs(distance) < 1e-4) // we need to have a small epsilon around 0 which is still ok 1365 continue; 1366 DoLog(2) && (Log() << Verbose(2) << "Projection of " << checker->second->node->getName() << " yields distance of " << distance << "." << endl); 1367 tmp = distance / fabs(distance); 1368 // 4b. Any have different sign to than before? (i.e. would lie outside convex hull with this starting triangle) 1369 if ((sign != 0) && (tmp != sign)) { 1370 // 4c. If so, break 4. loop and continue with next candidate in 1. loop 1371 DoLog(2) && (Log() << Verbose(2) << "Current candidates: " << A->second->node->getName() << "," << baseline->second.first->second->node->getName() << "," << baseline->second.second->second->node->getName() << " leaves " << checker->second->node->getName() << " outside the convex hull." << endl); 1372 break; 1373 } else { // note the sign for later 1374 DoLog(2) && (Log() << Verbose(2) << "Current candidates: " << A->second->node->getName() << "," << baseline->second.first->second->node->getName() << "," << baseline->second.second->second->node->getName() << " leave " << checker->second->node->getName() << " inside the convex hull." << endl); 1375 sign = tmp; 1376 } 1377 // 4d. Check whether the point is inside the triangle (check distance to each node 1378 tmp = checker->second->node->node->DistanceSquared(*A->second->node->node); 1379 int innerpoint = 0; 1380 if ((tmp < A->second->node->node->DistanceSquared(*baseline->second.first->second->node->node)) && (tmp < A->second->node->node->DistanceSquared(*baseline->second.second->second->node->node))) 1381 innerpoint++; 1382 tmp = checker->second->node->node->DistanceSquared(*baseline->second.first->second->node->node); 1383 if ((tmp < baseline->second.first->second->node->node->DistanceSquared(*A->second->node->node)) && (tmp < baseline->second.first->second->node->node->DistanceSquared(*baseline->second.second->second->node->node))) 1384 innerpoint++; 1385 tmp = checker->second->node->node->DistanceSquared(*baseline->second.second->second->node->node); 1386 if ((tmp < baseline->second.second->second->node->node->DistanceSquared(*baseline->second.first->second->node->node)) && (tmp < baseline->second.second->second->node->node->DistanceSquared(*A->second->node->node))) 1387 innerpoint++; 1388 // 4e. If so, break 4. loop and continue with next candidate in 1. loop 1389 if (innerpoint == 3) 1390 break; 1391 } 1392 // 5. come this far, all on same side? Then break 1. loop and construct triangle 1393 if (checker == PointsOnBoundary.end()) { 1394 DoLog(2) && (Log() << Verbose(2) << "Looks like we have a candidate!" << endl); 1395 break; 1396 } 1397 } 1398 if (baseline != DistanceMMap.end()) { 1399 BPS[0] = baseline->second.first->second; 1400 BPS[1] = baseline->second.second->second; 1401 BLS[0] = new class BoundaryLineSet(BPS, LinesOnBoundaryCount); 1402 BPS[0] = A->second; 1403 BPS[1] = baseline->second.second->second; 1404 BLS[1] = new class BoundaryLineSet(BPS, LinesOnBoundaryCount); 1405 BPS[0] = baseline->second.first->second; 1406 BPS[1] = A->second; 1407 BLS[2] = new class BoundaryLineSet(BPS, LinesOnBoundaryCount); 1408 1409 // 4b3. insert created triangle 1410 BTS = new class BoundaryTriangleSet(BLS, TrianglesOnBoundaryCount); 1411 TrianglesOnBoundary.insert(TrianglePair(TrianglesOnBoundaryCount, BTS)); 1412 TrianglesOnBoundaryCount++; 1413 for (int i = 0; i < NDIM; i++) { 1414 LinesOnBoundary.insert(LinePair(LinesOnBoundaryCount, BTS->lines[i])); 1415 LinesOnBoundaryCount++; 1416 } 1417 1418 DoLog(1) && (Log() << Verbose(1) << "Starting triangle is " << *BTS << "." << endl); 1419 } else { 1420 DoeLog(0) && (eLog() << Verbose(0) << "No starting triangle found." << endl); 1421 } 1326 1422 } 1327 1423 ; … … 1342 1438 void Tesselation::TesselateOnBoundary(const PointCloud * const cloud) 1343 1439 { 1344 Info FunctionInfo(__func__);1440 Info FunctionInfo(__func__); 1345 1441 bool flag; 1346 1442 PointMap::iterator winner; … … 1361 1457 // get peak point with respect to this base line's only triangle 1362 1458 BTS = baseline->second->triangles.begin()->second; // there is only one triangle so far 1363 Log() << Verbose(0) << "Current baseline is between " << *(baseline->second) << "." << endl;1459 DoLog(0) && (Log() << Verbose(0) << "Current baseline is between " << *(baseline->second) << "." << endl); 1364 1460 for (int i = 0; i < 3; i++) 1365 1461 if ((BTS->endpoints[i] != baseline->second->endpoints[0]) && (BTS->endpoints[i] != baseline->second->endpoints[1])) 1366 1462 peak = BTS->endpoints[i]; 1367 Log() << Verbose(1) << " and has peak " << *peak << "." << endl;1463 DoLog(1) && (Log() << Verbose(1) << " and has peak " << *peak << "." << endl); 1368 1464 1369 1465 // prepare some auxiliary vectors 1370 1466 Vector BaseLineCenter, BaseLine; 1371 BaseLineCenter.CopyVector(baseline->second->endpoints[0]->node->node); 1372 BaseLineCenter.AddVector(baseline->second->endpoints[1]->node->node); 1373 BaseLineCenter.Scale(1. / 2.); // points now to center of base line 1374 BaseLine.CopyVector(baseline->second->endpoints[0]->node->node); 1375 BaseLine.SubtractVector(baseline->second->endpoints[1]->node->node); 1467 BaseLineCenter = 0.5 * ((*baseline->second->endpoints[0]->node->node) + 1468 (*baseline->second->endpoints[1]->node->node)); 1469 BaseLine = (*baseline->second->endpoints[0]->node->node) - (*baseline->second->endpoints[1]->node->node); 1376 1470 1377 1471 // offset to center of triangle 1378 1472 CenterVector.Zero(); 1379 1473 for (int i = 0; i < 3; i++) 1380 CenterVector .AddVector(BTS->endpoints[i]->node->node);1474 CenterVector += BTS->getEndpoint(i); 1381 1475 CenterVector.Scale(1. / 3.); 1382 Log() << Verbose(2) << "CenterVector of base triangle is " << CenterVector << endl;1476 DoLog(2) && (Log() << Verbose(2) << "CenterVector of base triangle is " << CenterVector << endl); 1383 1477 1384 1478 // normal vector of triangle 1385 NormalVector.CopyVector(Center); 1386 NormalVector.SubtractVector(&CenterVector); 1479 NormalVector = (*Center) - CenterVector; 1387 1480 BTS->GetNormalVector(NormalVector); 1388 NormalVector .CopyVector(&BTS->NormalVector);1389 Log() << Verbose(2) << "NormalVector of base triangle is " << NormalVector << endl;1481 NormalVector = BTS->NormalVector; 1482 DoLog(2) && (Log() << Verbose(2) << "NormalVector of base triangle is " << NormalVector << endl); 1390 1483 1391 1484 // vector in propagation direction (out of triangle) 1392 1485 // project center vector onto triangle plane (points from intersection plane-NormalVector to plane-CenterVector intersection) 1393 PropagationVector.MakeNormalVector(&BaseLine, &NormalVector); 1394 TempVector.CopyVector(&CenterVector); 1395 TempVector.SubtractVector(baseline->second->endpoints[0]->node->node); // TempVector is vector on triangle plane pointing from one baseline egde towards center! 1486 PropagationVector = Plane(BaseLine, NormalVector,0).getNormal(); 1487 TempVector = CenterVector - (*baseline->second->endpoints[0]->node->node); // TempVector is vector on triangle plane pointing from one baseline egde towards center! 1396 1488 //Log() << Verbose(0) << "Projection of propagation onto temp: " << PropagationVector.Projection(&TempVector) << "." << endl; 1397 if (PropagationVector.ScalarProduct( &TempVector) > 0) // make sure normal propagation vector points outward from baseline1489 if (PropagationVector.ScalarProduct(TempVector) > 0) // make sure normal propagation vector points outward from baseline 1398 1490 PropagationVector.Scale(-1.); 1399 Log() << Verbose(2) << "PropagationVector of base triangle is " << PropagationVector << endl;1491 DoLog(2) && (Log() << Verbose(2) << "PropagationVector of base triangle is " << PropagationVector << endl); 1400 1492 winner = PointsOnBoundary.end(); 1401 1493 … … 1403 1495 for (PointMap::iterator target = PointsOnBoundary.begin(); target != PointsOnBoundary.end(); target++) { 1404 1496 if ((target->second != baseline->second->endpoints[0]) && (target->second != baseline->second->endpoints[1])) { // don't take the same endpoints 1405 Log() << Verbose(1) << "Target point is " << *(target->second) << ":" << endl;1497 DoLog(1) && (Log() << Verbose(1) << "Target point is " << *(target->second) << ":" << endl); 1406 1498 1407 1499 // first check direction, so that triangles don't intersect 1408 VirtualNormalVector.CopyVector(target->second->node->node); 1409 VirtualNormalVector.SubtractVector(&BaseLineCenter); // points from center of base line to target 1410 VirtualNormalVector.ProjectOntoPlane(&NormalVector); 1411 TempAngle = VirtualNormalVector.Angle(&PropagationVector); 1412 Log() << Verbose(2) << "VirtualNormalVector is " << VirtualNormalVector << " and PropagationVector is " << PropagationVector << "." << endl; 1413 if (TempAngle > (M_PI/2.)) { // no bends bigger than Pi/2 (90 degrees) 1414 Log() << Verbose(2) << "Angle on triangle plane between propagation direction and base line to " << *(target->second) << " is " << TempAngle << ", bad direction!" << endl; 1500 VirtualNormalVector = (*target->second->node->node) - BaseLineCenter; 1501 VirtualNormalVector.ProjectOntoPlane(NormalVector); 1502 TempAngle = VirtualNormalVector.Angle(PropagationVector); 1503 DoLog(2) && (Log() << Verbose(2) << "VirtualNormalVector is " << VirtualNormalVector << " and PropagationVector is " << PropagationVector << "." << endl); 1504 if (TempAngle > (M_PI / 2.)) { // no bends bigger than Pi/2 (90 degrees) 1505 DoLog(2) && (Log() << Verbose(2) << "Angle on triangle plane between propagation direction and base line to " << *(target->second) << " is " << TempAngle << ", bad direction!" << endl); 1415 1506 continue; 1416 1507 } else 1417 Log() << Verbose(2) << "Angle on triangle plane between propagation direction and base line to " << *(target->second) << " is " << TempAngle << ", good direction!" << endl;1508 DoLog(2) && (Log() << Verbose(2) << "Angle on triangle plane between propagation direction and base line to " << *(target->second) << " is " << TempAngle << ", good direction!" << endl); 1418 1509 1419 1510 // check first and second endpoint (if any connecting line goes to target has at least not more than 1 triangle) … … 1421 1512 LineChecker[1] = baseline->second->endpoints[1]->lines.find(target->first); 1422 1513 if (((LineChecker[0] != baseline->second->endpoints[0]->lines.end()) && (LineChecker[0]->second->triangles.size() == 2))) { 1423 Log() << Verbose(2) << *(baseline->second->endpoints[0]) << " has line " << *(LineChecker[0]->second) << " to " << *(target->second) << " as endpoint with " << LineChecker[0]->second->triangles.size() << " triangles." << endl;1514 DoLog(2) && (Log() << Verbose(2) << *(baseline->second->endpoints[0]) << " has line " << *(LineChecker[0]->second) << " to " << *(target->second) << " as endpoint with " << LineChecker[0]->second->triangles.size() << " triangles." << endl); 1424 1515 continue; 1425 1516 } 1426 1517 if (((LineChecker[1] != baseline->second->endpoints[1]->lines.end()) && (LineChecker[1]->second->triangles.size() == 2))) { 1427 Log() << Verbose(2) << *(baseline->second->endpoints[1]) << " has line " << *(LineChecker[1]->second) << " to " << *(target->second) << " as endpoint with " << LineChecker[1]->second->triangles.size() << " triangles." << endl;1518 DoLog(2) && (Log() << Verbose(2) << *(baseline->second->endpoints[1]) << " has line " << *(LineChecker[1]->second) << " to " << *(target->second) << " as endpoint with " << LineChecker[1]->second->triangles.size() << " triangles." << endl); 1428 1519 continue; 1429 1520 } … … 1431 1522 // check whether the envisaged triangle does not already exist (if both lines exist and have same endpoint) 1432 1523 if ((((LineChecker[0] != baseline->second->endpoints[0]->lines.end()) && (LineChecker[1] != baseline->second->endpoints[1]->lines.end()) && (GetCommonEndpoint(LineChecker[0]->second, LineChecker[1]->second) == peak)))) { 1433 Log() << Verbose(4) << "Current target is peak!" << endl;1524 DoLog(4) && (Log() << Verbose(4) << "Current target is peak!" << endl); 1434 1525 continue; 1435 1526 } 1436 1527 1437 1528 // check for linear dependence 1438 TempVector.CopyVector(baseline->second->endpoints[0]->node->node); 1439 TempVector.SubtractVector(target->second->node->node); 1440 helper.CopyVector(baseline->second->endpoints[1]->node->node); 1441 helper.SubtractVector(target->second->node->node); 1442 helper.ProjectOntoPlane(&TempVector); 1529 TempVector = (*baseline->second->endpoints[0]->node->node) - (*target->second->node->node); 1530 helper = (*baseline->second->endpoints[1]->node->node) - (*target->second->node->node); 1531 helper.ProjectOntoPlane(TempVector); 1443 1532 if (fabs(helper.NormSquared()) < MYEPSILON) { 1444 Log() << Verbose(2) << "Chosen set of vectors is linear dependent." << endl;1533 DoLog(2) && (Log() << Verbose(2) << "Chosen set of vectors is linear dependent." << endl); 1445 1534 continue; 1446 1535 } … … 1448 1537 // in case NOT both were found, create virtually this triangle, get its normal vector, calculate angle 1449 1538 flag = true; 1450 VirtualNormalVector.MakeNormalVector(baseline->second->endpoints[0]->node->node, baseline->second->endpoints[1]->node->node, target->second->node->node); 1451 TempVector.CopyVector(baseline->second->endpoints[0]->node->node); 1452 TempVector.AddVector(baseline->second->endpoints[1]->node->node); 1453 TempVector.AddVector(target->second->node->node); 1454 TempVector.Scale(1./3.); 1455 TempVector.SubtractVector(Center); 1539 VirtualNormalVector = Plane(*(baseline->second->endpoints[0]->node->node), 1540 *(baseline->second->endpoints[1]->node->node), 1541 *(target->second->node->node)).getNormal(); 1542 TempVector = (1./3.) * ((*baseline->second->endpoints[0]->node->node) + 1543 (*baseline->second->endpoints[1]->node->node) + 1544 (*target->second->node->node)); 1545 TempVector -= (*Center); 1456 1546 // make it always point outward 1457 if (VirtualNormalVector.ScalarProduct( &TempVector) < 0)1547 if (VirtualNormalVector.ScalarProduct(TempVector) < 0) 1458 1548 VirtualNormalVector.Scale(-1.); 1459 1549 // calculate angle 1460 TempAngle = NormalVector.Angle( &VirtualNormalVector);1461 Log() << Verbose(2) << "NormalVector is " << VirtualNormalVector << " and the angle is " << TempAngle << "." << endl;1550 TempAngle = NormalVector.Angle(VirtualNormalVector); 1551 DoLog(2) && (Log() << Verbose(2) << "NormalVector is " << VirtualNormalVector << " and the angle is " << TempAngle << "." << endl); 1462 1552 if ((SmallestAngle - TempAngle) > MYEPSILON) { // set to new possible winner 1463 1553 SmallestAngle = TempAngle; 1464 1554 winner = target; 1465 Log() << Verbose(2) << "New winner " << *winner->second->node << " due to smaller angle between normal vectors." << endl;1555 DoLog(2) && (Log() << Verbose(2) << "New winner " << *winner->second->node << " due to smaller angle between normal vectors." << endl); 1466 1556 } else if (fabs(SmallestAngle - TempAngle) < MYEPSILON) { // check the angle to propagation, both possible targets are in one plane! (their normals have same angle) 1467 1557 // hence, check the angles to some normal direction from our base line but in this common plane of both targets... 1468 helper.CopyVector(target->second->node->node); 1469 helper.SubtractVector(&BaseLineCenter); 1470 helper.ProjectOntoPlane(&BaseLine); 1558 helper = (*target->second->node->node) - BaseLineCenter; 1559 helper.ProjectOntoPlane(BaseLine); 1471 1560 // ...the one with the smaller angle is the better candidate 1472 TempVector.CopyVector(target->second->node->node); 1473 TempVector.SubtractVector(&BaseLineCenter); 1474 TempVector.ProjectOntoPlane(&VirtualNormalVector); 1475 TempAngle = TempVector.Angle(&helper); 1476 TempVector.CopyVector(winner->second->node->node); 1477 TempVector.SubtractVector(&BaseLineCenter); 1478 TempVector.ProjectOntoPlane(&VirtualNormalVector); 1479 if (TempAngle < TempVector.Angle(&helper)) { 1480 TempAngle = NormalVector.Angle(&VirtualNormalVector); 1561 TempVector = (*target->second->node->node) - BaseLineCenter; 1562 TempVector.ProjectOntoPlane(VirtualNormalVector); 1563 TempAngle = TempVector.Angle(helper); 1564 TempVector = (*winner->second->node->node) - BaseLineCenter; 1565 TempVector.ProjectOntoPlane(VirtualNormalVector); 1566 if (TempAngle < TempVector.Angle(helper)) { 1567 TempAngle = NormalVector.Angle(VirtualNormalVector); 1481 1568 SmallestAngle = TempAngle; 1482 1569 winner = target; 1483 Log() << Verbose(2) << "New winner " << *winner->second->node << " due to smaller angle " << TempAngle << " to propagation direction." << endl;1570 DoLog(2) && (Log() << Verbose(2) << "New winner " << *winner->second->node << " due to smaller angle " << TempAngle << " to propagation direction." << endl); 1484 1571 } else 1485 Log() << Verbose(2) << "Keeping old winner " << *winner->second->node << " due to smaller angle to propagation direction." << endl;1572 DoLog(2) && (Log() << Verbose(2) << "Keeping old winner " << *winner->second->node << " due to smaller angle to propagation direction." << endl); 1486 1573 } else 1487 Log() << Verbose(2) << "Keeping old winner " << *winner->second->node << " due to smaller angle between normal vectors." << endl;1574 DoLog(2) && (Log() << Verbose(2) << "Keeping old winner " << *winner->second->node << " due to smaller angle between normal vectors." << endl); 1488 1575 } 1489 1576 } // end of loop over all boundary points … … 1491 1578 // 5b. The point of the above whose triangle has the greatest angle with the triangle the current line belongs to (it only belongs to one, remember!): New triangle 1492 1579 if (winner != PointsOnBoundary.end()) { 1493 Log() << Verbose(0) << "Winning target point is " << *(winner->second) << " with angle " << SmallestAngle << "." << endl;1580 DoLog(0) && (Log() << Verbose(0) << "Winning target point is " << *(winner->second) << " with angle " << SmallestAngle << "." << endl); 1494 1581 // create the lins of not yet present 1495 1582 BLS[0] = baseline->second; … … 1515 1602 BTS = new class BoundaryTriangleSet(BLS, TrianglesOnBoundaryCount); 1516 1603 BTS->GetCenter(&helper); 1517 helper .SubtractVector(Center);1518 helper .Scale(-1);1604 helper -= (*Center); 1605 helper *= -1; 1519 1606 BTS->GetNormalVector(helper); 1520 1607 TrianglesOnBoundary.insert(TrianglePair(TrianglesOnBoundaryCount, BTS)); 1521 1608 TrianglesOnBoundaryCount++; 1522 1609 } else { 1523 eLog() << Verbose(2) << "I could not determine a winner for this baseline " << *(baseline->second) << "." << endl;1610 DoeLog(2) && (eLog() << Verbose(2) << "I could not determine a winner for this baseline " << *(baseline->second) << "." << endl); 1524 1611 } 1525 1612 1526 1613 // 5d. If the set of lines is not yet empty, go to 5. and continue 1527 1614 } else 1528 Log() << Verbose(0) << "Baseline candidate " << *(baseline->second) << " has a triangle count of " << baseline->second->triangles.size() << "." << endl;1615 DoLog(0) && (Log() << Verbose(0) << "Baseline candidate " << *(baseline->second) << " has a triangle count of " << baseline->second->triangles.size() << "." << endl); 1529 1616 } while (flag); 1530 1617 1531 1618 // exit 1532 delete(Center); 1533 }; 1619 delete (Center); 1620 } 1621 ; 1534 1622 1535 1623 /** Inserts all points outside of the tesselated surface into it by adding new triangles. … … 1541 1629 bool Tesselation::InsertStraddlingPoints(const PointCloud *cloud, const LinkedCell *LC) 1542 1630 { 1543 Info FunctionInfo(__func__);1631 Info FunctionInfo(__func__); 1544 1632 Vector Intersection, Normal; 1545 1633 TesselPoint *Walker = NULL; … … 1551 1639 cloud->GoToFirst(); 1552 1640 BoundaryPoints = new LinkedCell(this, 5.); 1553 while (!cloud->IsEnd()) { // we only have to go once through all points, as boundary can become only bigger1641 while (!cloud->IsEnd()) { // we only have to go once through all points, as boundary can become only bigger 1554 1642 if (AddFlag) { 1555 delete (BoundaryPoints);1643 delete (BoundaryPoints); 1556 1644 BoundaryPoints = new LinkedCell(this, 5.); 1557 1645 AddFlag = false; 1558 1646 } 1559 1647 Walker = cloud->GetPoint(); 1560 Log() << Verbose(0) << "Current point is " << *Walker << "." << endl;1648 DoLog(0) && (Log() << Verbose(0) << "Current point is " << *Walker << "." << endl); 1561 1649 // get the next triangle 1562 1650 triangles = FindClosestTrianglesToVector(Walker->node, BoundaryPoints); 1563 1651 BTS = triangles->front(); 1564 1652 if ((triangles == NULL) || (BTS->ContainsBoundaryPoint(Walker))) { 1565 Log() << Verbose(0) << "No triangles found, probably a tesselation point itself." << endl;1653 DoLog(0) && (Log() << Verbose(0) << "No triangles found, probably a tesselation point itself." << endl); 1566 1654 cloud->GoToNext(); 1567 1655 continue; 1568 1656 } else { 1569 1657 } 1570 Log() << Verbose(0) << "Closest triangle is " << *BTS << "." << endl;1658 DoLog(0) && (Log() << Verbose(0) << "Closest triangle is " << *BTS << "." << endl); 1571 1659 // get the intersection point 1572 1660 if (BTS->GetIntersectionInsideTriangle(Center, Walker->node, &Intersection)) { 1573 Log() << Verbose(0) << "We have an intersection at " << Intersection << "." << endl;1661 DoLog(0) && (Log() << Verbose(0) << "We have an intersection at " << Intersection << "." << endl); 1574 1662 // we have the intersection, check whether in- or outside of boundary 1575 if ((Center->DistanceSquared( Walker->node) - Center->DistanceSquared(&Intersection)) < -MYEPSILON) {1663 if ((Center->DistanceSquared(*Walker->node) - Center->DistanceSquared(Intersection)) < -MYEPSILON) { 1576 1664 // inside, next! 1577 Log() << Verbose(0) << *Walker << " is inside wrt triangle " << *BTS << "." << endl;1665 DoLog(0) && (Log() << Verbose(0) << *Walker << " is inside wrt triangle " << *BTS << "." << endl); 1578 1666 } else { 1579 1667 // outside! 1580 Log() << Verbose(0) << *Walker << " is outside wrt triangle " << *BTS << "." << endl;1668 DoLog(0) && (Log() << Verbose(0) << *Walker << " is outside wrt triangle " << *BTS << "." << endl); 1581 1669 class BoundaryLineSet *OldLines[3], *NewLines[3]; 1582 1670 class BoundaryPointSet *OldPoints[3], *NewPoint; 1583 1671 // store the three old lines and old points 1584 for (int i =0;i<3;i++) {1672 for (int i = 0; i < 3; i++) { 1585 1673 OldLines[i] = BTS->lines[i]; 1586 1674 OldPoints[i] = BTS->endpoints[i]; 1587 1675 } 1588 Normal .CopyVector(&BTS->NormalVector);1676 Normal = BTS->NormalVector; 1589 1677 // add Walker to boundary points 1590 Log() << Verbose(0) << "Adding " << *Walker << " to BoundaryPoints." << endl;1678 DoLog(0) && (Log() << Verbose(0) << "Adding " << *Walker << " to BoundaryPoints." << endl); 1591 1679 AddFlag = true; 1592 if (AddBoundaryPoint(Walker, 0))1680 if (AddBoundaryPoint(Walker, 0)) 1593 1681 NewPoint = BPS[0]; 1594 1682 else 1595 1683 continue; 1596 1684 // remove triangle 1597 Log() << Verbose(0) << "Erasing triangle " << *BTS << "." << endl;1685 DoLog(0) && (Log() << Verbose(0) << "Erasing triangle " << *BTS << "." << endl); 1598 1686 TrianglesOnBoundary.erase(BTS->Nr); 1599 delete (BTS);1687 delete (BTS); 1600 1688 // create three new boundary lines 1601 for (int i =0;i<3;i++) {1689 for (int i = 0; i < 3; i++) { 1602 1690 BPS[0] = NewPoint; 1603 1691 BPS[1] = OldPoints[i]; 1604 1692 NewLines[i] = new class BoundaryLineSet(BPS, LinesOnBoundaryCount); 1605 Log() << Verbose(1) << "Creating new line " << *NewLines[i] << "." << endl;1693 DoLog(1) && (Log() << Verbose(1) << "Creating new line " << *NewLines[i] << "." << endl); 1606 1694 LinesOnBoundary.insert(LinePair(LinesOnBoundaryCount, NewLines[i])); // no need for check for unique insertion as BPS[0] is definitely a new one 1607 1695 LinesOnBoundaryCount++; 1608 1696 } 1609 1697 // create three new triangle with new point 1610 for (int i =0;i<3;i++) { // find all baselines1698 for (int i = 0; i < 3; i++) { // find all baselines 1611 1699 BLS[0] = OldLines[i]; 1612 1700 int n = 1; 1613 for (int j =0;j<3;j++) {1701 for (int j = 0; j < 3; j++) { 1614 1702 if (NewLines[j]->IsConnectedTo(BLS[0])) { 1615 if (n >2) {1616 eLog() << Verbose(2) << BLS[0] << " connects to all of the new lines?!" << endl;1703 if (n > 2) { 1704 DoeLog(2) && (eLog() << Verbose(2) << BLS[0] << " connects to all of the new lines?!" << endl); 1617 1705 return false; 1618 1706 } else … … 1625 1713 BTS->GetNormalVector(Normal); 1626 1714 Normal.Scale(-1.); 1627 Log() << Verbose(0) << "Created new triangle " << *BTS << "." << endl;1715 DoLog(0) && (Log() << Verbose(0) << "Created new triangle " << *BTS << "." << endl); 1628 1716 TrianglesOnBoundary.insert(TrianglePair(TrianglesOnBoundaryCount, BTS)); 1629 1717 TrianglesOnBoundaryCount++; … … 1631 1719 } 1632 1720 } else { // something is wrong with FindClosestTriangleToPoint! 1633 eLog() << Verbose(1) << "The closest triangle did not produce an intersection!" << endl;1721 DoeLog(1) && (eLog() << Verbose(1) << "The closest triangle did not produce an intersection!" << endl); 1634 1722 return false; 1635 1723 } … … 1638 1726 1639 1727 // exit 1640 delete (Center);1728 delete (Center); 1641 1729 return true; 1642 }; 1730 } 1731 ; 1643 1732 1644 1733 /** Adds a point to the tesselation::PointsOnBoundary list. … … 1649 1738 bool Tesselation::AddBoundaryPoint(TesselPoint * Walker, const int n) 1650 1739 { 1651 Info FunctionInfo(__func__);1740 Info FunctionInfo(__func__); 1652 1741 PointTestPair InsertUnique; 1653 1742 BPS[n] = new class BoundaryPointSet(Walker); … … 1657 1746 return true; 1658 1747 } else { 1659 delete (BPS[n]);1748 delete (BPS[n]); 1660 1749 BPS[n] = InsertUnique.first->second; 1661 1750 return false; … … 1671 1760 void Tesselation::AddTesselationPoint(TesselPoint* Candidate, const int n) 1672 1761 { 1673 Info FunctionInfo(__func__);1762 Info FunctionInfo(__func__); 1674 1763 PointTestPair InsertUnique; 1675 1764 TPS[n] = new class BoundaryPointSet(Candidate); … … 1679 1768 } else { 1680 1769 delete TPS[n]; 1681 Log() << Verbose(0) << "Node " << *((InsertUnique.first)->second->node) << " is already present in PointsOnBoundary." << endl;1770 DoLog(0) && (Log() << Verbose(0) << "Node " << *((InsertUnique.first)->second->node) << " is already present in PointsOnBoundary." << endl); 1682 1771 TPS[n] = (InsertUnique.first)->second; 1683 1772 } … … 1692 1781 void Tesselation::SetTesselationPoint(TesselPoint* Candidate, const int n) const 1693 1782 { 1694 Info FunctionInfo(__func__);1783 Info FunctionInfo(__func__); 1695 1784 PointMap::const_iterator FindPoint = PointsOnBoundary.find(Candidate->nr); 1696 1785 if (FindPoint != PointsOnBoundary.end()) … … 1698 1787 else 1699 1788 TPS[n] = NULL; 1700 }; 1789 } 1790 ; 1701 1791 1702 1792 /** Function tries to add line from current Points in BPS to BoundaryLineSet. 1703 1793 * If successful it raises the line count and inserts the new line into the BLS, 1704 1794 * if unsuccessful, it writes the line which had been present into the BLS, deleting the new constructed one. 1795 * @param *OptCenter desired OptCenter if there are more than one candidate line 1796 * @param *candidate third point of the triangle to be, for checking between multiple open line candidates 1705 1797 * @param *a first endpoint 1706 1798 * @param *b second endpoint 1707 1799 * @param n index of Tesselation::BLS giving the line with both endpoints 1708 1800 */ 1709 void Tesselation::AddTesselationLine(class BoundaryPointSet *a, class BoundaryPointSet *b, const int n) { 1801 void Tesselation::AddTesselationLine(const Vector * const OptCenter, const BoundaryPointSet * const candidate, class BoundaryPointSet *a, class BoundaryPointSet *b, const int n) 1802 { 1710 1803 bool insertNewLine = true; 1711 1712 1804 LineMap::iterator FindLine = a->lines.find(b->node->nr); 1805 BoundaryLineSet *WinningLine = NULL; 1713 1806 if (FindLine != a->lines.end()) { 1714 Log() << Verbose(1) << "INFO: There is at least one line between " << *a << " and " << *b << ": " << *(FindLine->second) << "." << endl;1715 1716 pair<LineMap::iterator, LineMap::iterator> FindPair;1807 DoLog(1) && (Log() << Verbose(1) << "INFO: There is at least one line between " << *a << " and " << *b << ": " << *(FindLine->second) << "." << endl); 1808 1809 pair<LineMap::iterator, LineMap::iterator> FindPair; 1717 1810 FindPair = a->lines.equal_range(b->node->nr); 1718 1811 1719 for (FindLine = FindPair.first; FindLine != FindPair.second; FindLine++) { 1812 for (FindLine = FindPair.first; (FindLine != FindPair.second) && (insertNewLine); FindLine++) { 1813 DoLog(1) && (Log() << Verbose(1) << "INFO: Checking line " << *(FindLine->second) << " ..." << endl); 1720 1814 // If there is a line with less than two attached triangles, we don't need a new line. 1721 if (FindLine->second->triangles.size() < 2) {1722 insertNewLine = false;1723 Log() << Verbose(0) << "Using existing line " << *FindLine->second << endl;1724 1725 BPS[0] = FindLine->second->endpoints[0];1726 BPS[1] = FindLine->second->endpoints[1];1727 BLS[n] = FindLine->second;1728 1729 // remove existing line from OpenLines1730 CandidateMap::iterator CandidateLine = OpenLines.find(BLS[n]);1731 if (CandidateLine != OpenLines.end()) {1732 Log() << Verbose(1) << " Removing line from OpenLines." << endl;1733 delete(CandidateLine->second);1734 OpenLines.erase(CandidateLine);1735 } else {1736 eLog() << Verbose(1) << "Line exists and is attached to less than two triangles, but not in OpenLines!" << endl;1815 if (FindLine->second->triangles.size() == 1) { 1816 CandidateMap::iterator Finder = OpenLines.find(FindLine->second); 1817 if (!Finder->second->pointlist.empty()) 1818 DoLog(1) && (Log() << Verbose(1) << "INFO: line " << *(FindLine->second) << " is open with candidate " << **(Finder->second->pointlist.begin()) << "." << endl); 1819 else 1820 DoLog(1) && (Log() << Verbose(1) << "INFO: line " << *(FindLine->second) << " is open with no candidate." << endl); 1821 // get open line 1822 for (TesselPointList::const_iterator CandidateChecker = Finder->second->pointlist.begin(); CandidateChecker != Finder->second->pointlist.end(); ++CandidateChecker) { 1823 if ((*(CandidateChecker) == candidate->node) && (OptCenter == NULL || OptCenter->DistanceSquared(Finder->second->OptCenter) < MYEPSILON )) { // stop searching if candidate matches 1824 DoLog(1) && (Log() << Verbose(1) << "ACCEPT: Candidate " << *(*CandidateChecker) << " has the right center " << Finder->second->OptCenter << "." << endl); 1825 insertNewLine = false; 1826 WinningLine = FindLine->second; 1827 break; 1828 } else { 1829 DoLog(1) && (Log() << Verbose(1) << "REJECT: Candidate " << *(*CandidateChecker) << "'s center " << Finder->second->OptCenter << " does not match desired on " << *OptCenter << "." << endl); 1830 } 1737 1831 } 1738 1739 break;1740 1832 } 1741 1833 } … … 1743 1835 1744 1836 if (insertNewLine) { 1745 AlwaysAddTesselationTriangleLine(a, b, n); 1837 AddNewTesselationTriangleLine(a, b, n); 1838 } else { 1839 AddExistingTesselationTriangleLine(WinningLine, n); 1746 1840 } 1747 1841 } … … 1756 1850 * @param n index of Tesselation::BLS giving the line with both endpoints 1757 1851 */ 1758 void Tesselation::A lwaysAddTesselationTriangleLine(class BoundaryPointSet *a, class BoundaryPointSet *b, const int n)1759 { 1760 Info FunctionInfo(__func__);1761 Log() << Verbose(0) << "Adding open line [" << LinesOnBoundaryCount << "|" << *(a->node) << " and " << *(b->node) << "." << endl;1852 void Tesselation::AddNewTesselationTriangleLine(class BoundaryPointSet *a, class BoundaryPointSet *b, const int n) 1853 { 1854 Info FunctionInfo(__func__); 1855 DoLog(0) && (Log() << Verbose(0) << "Adding open line [" << LinesOnBoundaryCount << "|" << *(a->node) << " and " << *(b->node) << "." << endl); 1762 1856 BPS[0] = a; 1763 1857 BPS[1] = b; 1764 BLS[n] = new class BoundaryLineSet(BPS, LinesOnBoundaryCount); // this also adds the line to the local maps1858 BLS[n] = new class BoundaryLineSet(BPS, LinesOnBoundaryCount); // this also adds the line to the local maps 1765 1859 // add line to global map 1766 1860 LinesOnBoundary.insert(LinePair(LinesOnBoundaryCount, BLS[n])); … … 1769 1863 // also add to open lines 1770 1864 CandidateForTesselation *CFT = new CandidateForTesselation(BLS[n]); 1771 OpenLines.insert(pair< BoundaryLineSet *, CandidateForTesselation *> (BLS[n], CFT)); 1772 }; 1865 OpenLines.insert(pair<BoundaryLineSet *, CandidateForTesselation *> (BLS[n], CFT)); 1866 } 1867 ; 1868 1869 /** Uses an existing line for a new triangle. 1870 * Sets Tesselation::BLS[\a n] and removes the lines from Tesselation::OpenLines. 1871 * \param *FindLine the line to add 1872 * \param n index of the line to set in Tesselation::BLS 1873 */ 1874 void Tesselation::AddExistingTesselationTriangleLine(class BoundaryLineSet *Line, int n) 1875 { 1876 Info FunctionInfo(__func__); 1877 DoLog(0) && (Log() << Verbose(0) << "Using existing line " << *Line << endl); 1878 1879 // set endpoints and line 1880 BPS[0] = Line->endpoints[0]; 1881 BPS[1] = Line->endpoints[1]; 1882 BLS[n] = Line; 1883 // remove existing line from OpenLines 1884 CandidateMap::iterator CandidateLine = OpenLines.find(BLS[n]); 1885 if (CandidateLine != OpenLines.end()) { 1886 DoLog(1) && (Log() << Verbose(1) << " Removing line from OpenLines." << endl); 1887 delete (CandidateLine->second); 1888 OpenLines.erase(CandidateLine); 1889 } else { 1890 DoeLog(1) && (eLog() << Verbose(1) << "Line exists and is attached to less than two triangles, but not in OpenLines!" << endl); 1891 } 1892 } 1893 ; 1773 1894 1774 1895 /** Function adds triangle to global list. … … 1777 1898 void Tesselation::AddTesselationTriangle() 1778 1899 { 1779 Info FunctionInfo(__func__);1780 Log() << Verbose(1) << "Adding triangle to global TrianglesOnBoundary map." << endl;1900 Info FunctionInfo(__func__); 1901 DoLog(1) && (Log() << Verbose(1) << "Adding triangle to global TrianglesOnBoundary map." << endl); 1781 1902 1782 1903 // add triangle to global map … … 1788 1909 1789 1910 // NOTE: add triangle to local maps is done in constructor of BoundaryTriangleSet 1790 }; 1911 } 1912 ; 1791 1913 1792 1914 /** Function adds triangle to global list. … … 1796 1918 void Tesselation::AddTesselationTriangle(const int nr) 1797 1919 { 1798 Info FunctionInfo(__func__);1799 Log() << Verbose(0) << "Adding triangle to global TrianglesOnBoundary map." << endl;1920 Info FunctionInfo(__func__); 1921 DoLog(0) && (Log() << Verbose(0) << "Adding triangle to global TrianglesOnBoundary map." << endl); 1800 1922 1801 1923 // add triangle to global map … … 1806 1928 1807 1929 // NOTE: add triangle to local maps is done in constructor of BoundaryTriangleSet 1808 }; 1930 } 1931 ; 1809 1932 1810 1933 /** Removes a triangle from the tesselation. … … 1815 1938 void Tesselation::RemoveTesselationTriangle(class BoundaryTriangleSet *triangle) 1816 1939 { 1817 Info FunctionInfo(__func__);1940 Info FunctionInfo(__func__); 1818 1941 if (triangle == NULL) 1819 1942 return; 1820 1943 for (int i = 0; i < 3; i++) { 1821 1944 if (triangle->lines[i] != NULL) { 1822 Log() << Verbose(0) << "Removing triangle Nr." << triangle->Nr << " in line " << *triangle->lines[i] << "." << endl;1945 DoLog(0) && (Log() << Verbose(0) << "Removing triangle Nr." << triangle->Nr << " in line " << *triangle->lines[i] << "." << endl); 1823 1946 triangle->lines[i]->triangles.erase(triangle->Nr); 1824 1947 if (triangle->lines[i]->triangles.empty()) { 1825 Log() << Verbose(0) << *triangle->lines[i] << " is no more attached to any triangle, erasing." << endl;1826 RemoveTesselationLine(triangle->lines[i]);1948 DoLog(0) && (Log() << Verbose(0) << *triangle->lines[i] << " is no more attached to any triangle, erasing." << endl); 1949 RemoveTesselationLine(triangle->lines[i]); 1827 1950 } else { 1828 Log() << Verbose(0) << *triangle->lines[i] << " is still attached to another triangle: ";1829 OpenLines.insert(pair< BoundaryLineSet *, CandidateForTesselation *> (triangle->lines[i], NULL));1830 for (TriangleMap::iterator TriangleRunner = triangle->lines[i]->triangles.begin(); TriangleRunner != triangle->lines[i]->triangles.end(); TriangleRunner++)1831 Log() << Verbose(0) << "[" << (TriangleRunner->second)->Nr << "|" << *((TriangleRunner->second)->endpoints[0]) << ", " << *((TriangleRunner->second)->endpoints[1]) << ", " << *((TriangleRunner->second)->endpoints[2]) << "] \t";1832 Log() << Verbose(0) << endl;1833 // for (int j=0;j<2;j++) {1834 // Log() << Verbose(0) << "Lines of endpoint " << *(triangle->lines[i]->endpoints[j]) << ": ";1835 // for(LineMap::iterator LineRunner = triangle->lines[i]->endpoints[j]->lines.begin(); LineRunner != triangle->lines[i]->endpoints[j]->lines.end(); LineRunner++)1836 // Log() << Verbose(0) << "[" << *(LineRunner->second) << "] \t";1837 // Log() << Verbose(0) << endl;1838 // }1951 DoLog(0) && (Log() << Verbose(0) << *triangle->lines[i] << " is still attached to another triangle: "); 1952 OpenLines.insert(pair<BoundaryLineSet *, CandidateForTesselation *> (triangle->lines[i], NULL)); 1953 for (TriangleMap::iterator TriangleRunner = triangle->lines[i]->triangles.begin(); TriangleRunner != triangle->lines[i]->triangles.end(); TriangleRunner++) 1954 DoLog(0) && (Log() << Verbose(0) << "[" << (TriangleRunner->second)->Nr << "|" << *((TriangleRunner->second)->endpoints[0]) << ", " << *((TriangleRunner->second)->endpoints[1]) << ", " << *((TriangleRunner->second)->endpoints[2]) << "] \t"); 1955 DoLog(0) && (Log() << Verbose(0) << endl); 1956 // for (int j=0;j<2;j++) { 1957 // Log() << Verbose(0) << "Lines of endpoint " << *(triangle->lines[i]->endpoints[j]) << ": "; 1958 // for(LineMap::iterator LineRunner = triangle->lines[i]->endpoints[j]->lines.begin(); LineRunner != triangle->lines[i]->endpoints[j]->lines.end(); LineRunner++) 1959 // Log() << Verbose(0) << "[" << *(LineRunner->second) << "] \t"; 1960 // Log() << Verbose(0) << endl; 1961 // } 1839 1962 } 1840 triangle->lines[i] = NULL; // free'd or not: disconnect1963 triangle->lines[i] = NULL; // free'd or not: disconnect 1841 1964 } else 1842 eLog() << Verbose(1) << "This line " << i << " has already been free'd." << endl;1965 DoeLog(1) && (eLog() << Verbose(1) << "This line " << i << " has already been free'd." << endl); 1843 1966 } 1844 1967 1845 1968 if (TrianglesOnBoundary.erase(triangle->Nr)) 1846 Log() << Verbose(0) << "Removing triangle Nr. " << triangle->Nr << "." << endl; 1847 delete(triangle); 1848 }; 1969 DoLog(0) && (Log() << Verbose(0) << "Removing triangle Nr. " << triangle->Nr << "." << endl); 1970 delete (triangle); 1971 } 1972 ; 1849 1973 1850 1974 /** Removes a line from the tesselation. … … 1854 1978 void Tesselation::RemoveTesselationLine(class BoundaryLineSet *line) 1855 1979 { 1856 Info FunctionInfo(__func__);1980 Info FunctionInfo(__func__); 1857 1981 int Numbers[2]; 1858 1982 … … 1875 1999 for (LineMap::iterator Runner = erasor.first; Runner != erasor.second; Runner++) 1876 2000 if ((*Runner).second == line) { 1877 Log() << Verbose(0) << "Removing Line Nr. " << line->Nr << " in boundary point " << *line->endpoints[i] << "." << endl;2001 DoLog(0) && (Log() << Verbose(0) << "Removing Line Nr. " << line->Nr << " in boundary point " << *line->endpoints[i] << "." << endl); 1878 2002 line->endpoints[i]->lines.erase(Runner); 1879 2003 break; … … 1881 2005 } else { // there's just a single line left 1882 2006 if (line->endpoints[i]->lines.erase(line->Nr)) 1883 Log() << Verbose(0) << "Removing Line Nr. " << line->Nr << " in boundary point " << *line->endpoints[i] << "." << endl;2007 DoLog(0) && (Log() << Verbose(0) << "Removing Line Nr. " << line->Nr << " in boundary point " << *line->endpoints[i] << "." << endl); 1884 2008 } 1885 2009 if (line->endpoints[i]->lines.empty()) { 1886 Log() << Verbose(0) << *line->endpoints[i] << " has no more lines it's attached to, erasing." << endl;2010 DoLog(0) && (Log() << Verbose(0) << *line->endpoints[i] << " has no more lines it's attached to, erasing." << endl); 1887 2011 RemoveTesselationPoint(line->endpoints[i]); 1888 2012 } else { 1889 Log() << Verbose(0) << *line->endpoints[i] << " has still lines it's attached to: ";1890 for (LineMap::iterator LineRunner = line->endpoints[i]->lines.begin(); LineRunner != line->endpoints[i]->lines.end(); LineRunner++)1891 Log() << Verbose(0) << "[" << *(LineRunner->second) << "] \t";1892 Log() << Verbose(0) << endl;2013 DoLog(0) && (Log() << Verbose(0) << *line->endpoints[i] << " has still lines it's attached to: "); 2014 for (LineMap::iterator LineRunner = line->endpoints[i]->lines.begin(); LineRunner != line->endpoints[i]->lines.end(); LineRunner++) 2015 DoLog(0) && (Log() << Verbose(0) << "[" << *(LineRunner->second) << "] \t"); 2016 DoLog(0) && (Log() << Verbose(0) << endl); 1893 2017 } 1894 line->endpoints[i] = NULL; // free'd or not: disconnect2018 line->endpoints[i] = NULL; // free'd or not: disconnect 1895 2019 } else 1896 eLog() << Verbose(1) << "Endpoint " << i << " has already been free'd." << endl;2020 DoeLog(1) && (eLog() << Verbose(1) << "Endpoint " << i << " has already been free'd." << endl); 1897 2021 } 1898 2022 if (!line->triangles.empty()) 1899 eLog() << Verbose(2) << "Memory Leak! I " << *line << " am still connected to some triangles." << endl;2023 DoeLog(2) && (eLog() << Verbose(2) << "Memory Leak! I " << *line << " am still connected to some triangles." << endl); 1900 2024 1901 2025 if (LinesOnBoundary.erase(line->Nr)) 1902 Log() << Verbose(0) << "Removing line Nr. " << line->Nr << "." << endl; 1903 delete(line); 1904 }; 2026 DoLog(0) && (Log() << Verbose(0) << "Removing line Nr. " << line->Nr << "." << endl); 2027 delete (line); 2028 } 2029 ; 1905 2030 1906 2031 /** Removes a point from the tesselation. … … 1911 2036 void Tesselation::RemoveTesselationPoint(class BoundaryPointSet *point) 1912 2037 { 1913 Info FunctionInfo(__func__);2038 Info FunctionInfo(__func__); 1914 2039 if (point == NULL) 1915 2040 return; 1916 2041 if (PointsOnBoundary.erase(point->Nr)) 1917 Log() << Verbose(0) << "Removing point Nr. " << point->Nr << "." << endl; 1918 delete(point); 1919 }; 2042 DoLog(0) && (Log() << Verbose(0) << "Removing point Nr. " << point->Nr << "." << endl); 2043 delete (point); 2044 } 2045 ; 2046 2047 /** Checks validity of a given sphere of a candidate line. 2048 * \sa CandidateForTesselation::CheckValidity(), which is more evolved. 2049 * We check CandidateForTesselation::OtherOptCenter 2050 * \param &CandidateLine contains other degenerated candidates which we have to subtract as well 2051 * \param RADIUS radius of sphere 2052 * \param *LC LinkedCell structure with other atoms 2053 * \return true - candidate triangle is degenerated, false - candidate triangle is not degenerated 2054 */ 2055 bool Tesselation::CheckDegeneracy(CandidateForTesselation &CandidateLine, const double RADIUS, const LinkedCell *LC) const 2056 { 2057 Info FunctionInfo(__func__); 2058 2059 DoLog(1) && (Log() << Verbose(1) << "INFO: Checking whether sphere contains no others points ..." << endl); 2060 bool flag = true; 2061 2062 DoLog(1) && (Log() << Verbose(1) << "Check by: draw sphere {" << CandidateLine.OtherOptCenter[0] << " " << CandidateLine.OtherOptCenter[1] << " " << CandidateLine.OtherOptCenter[2] << "} radius " << RADIUS << " resolution 30" << endl); 2063 // get all points inside the sphere 2064 TesselPointList *ListofPoints = LC->GetPointsInsideSphere(RADIUS, &CandidateLine.OtherOptCenter); 2065 2066 DoLog(1) && (Log() << Verbose(1) << "The following atoms are inside sphere at " << CandidateLine.OtherOptCenter << ":" << endl); 2067 for (TesselPointList::const_iterator Runner = ListofPoints->begin(); Runner != ListofPoints->end(); ++Runner) 2068 DoLog(1) && (Log() << Verbose(1) << " " << *(*Runner) << " with distance " << (*Runner)->node->distance(CandidateLine.OtherOptCenter) << "." << endl); 2069 2070 // remove triangles's endpoints 2071 for (int i = 0; i < 2; i++) 2072 ListofPoints->remove(CandidateLine.BaseLine->endpoints[i]->node); 2073 2074 // remove other candidates 2075 for (TesselPointList::const_iterator Runner = CandidateLine.pointlist.begin(); Runner != CandidateLine.pointlist.end(); ++Runner) 2076 ListofPoints->remove(*Runner); 2077 2078 // check for other points 2079 if (!ListofPoints->empty()) { 2080 DoLog(1) && (Log() << Verbose(1) << "CheckDegeneracy: There are still " << ListofPoints->size() << " points inside the sphere." << endl); 2081 flag = false; 2082 DoLog(1) && (Log() << Verbose(1) << "External atoms inside of sphere at " << CandidateLine.OtherOptCenter << ":" << endl); 2083 for (TesselPointList::const_iterator Runner = ListofPoints->begin(); Runner != ListofPoints->end(); ++Runner) 2084 DoLog(1) && (Log() << Verbose(1) << " " << *(*Runner) << " with distance " << (*Runner)->node->distance(CandidateLine.OtherOptCenter) << "." << endl); 2085 } 2086 delete (ListofPoints); 2087 2088 return flag; 2089 } 2090 ; 1920 2091 1921 2092 /** Checks whether the triangle consisting of the three points is already present. … … 1930 2101 int Tesselation::CheckPresenceOfTriangle(TesselPoint *Candidates[3]) const 1931 2102 { 1932 Info FunctionInfo(__func__);2103 Info FunctionInfo(__func__); 1933 2104 int adjacentTriangleCount = 0; 1934 2105 class BoundaryPointSet *Points[3]; … … 1952 2123 for (; (FindLine != Points[i]->lines.end()) && (FindLine->first == Points[j]->node->nr); FindLine++) { 1953 2124 TriangleMap *triangles = &FindLine->second->triangles; 1954 Log() << Verbose(1) << "Current line is " << FindLine->first << ": " << *(FindLine->second) << " with triangles " << triangles << "." << endl;2125 DoLog(1) && (Log() << Verbose(1) << "Current line is " << FindLine->first << ": " << *(FindLine->second) << " with triangles " << triangles << "." << endl); 1955 2126 for (TriangleMap::const_iterator FindTriangle = triangles->begin(); FindTriangle != triangles->end(); FindTriangle++) { 1956 2127 if (FindTriangle->second->IsPresentTupel(Points)) { … … 1958 2129 } 1959 2130 } 1960 Log() << Verbose(1) << "end." << endl;2131 DoLog(1) && (Log() << Verbose(1) << "end." << endl); 1961 2132 } 1962 2133 // Only one of the triangle lines must be considered for the triangle count. … … 1968 2139 } 1969 2140 1970 Log() << Verbose(0) << "Found " << adjacentTriangleCount << " adjacent triangles for the point set." << endl;2141 DoLog(0) && (Log() << Verbose(0) << "Found " << adjacentTriangleCount << " adjacent triangles for the point set." << endl); 1971 2142 return adjacentTriangleCount; 1972 }; 2143 } 2144 ; 1973 2145 1974 2146 /** Checks whether the triangle consisting of the three points is already present. … … 1982 2154 class BoundaryTriangleSet * Tesselation::GetPresentTriangle(TesselPoint *Candidates[3]) 1983 2155 { 1984 Info FunctionInfo(__func__);2156 Info FunctionInfo(__func__); 1985 2157 class BoundaryTriangleSet *triangle = NULL; 1986 2158 class BoundaryPointSet *Points[3]; … … 2020 2192 2021 2193 return triangle; 2022 } ;2023 2194 } 2195 ; 2024 2196 2025 2197 /** Finds the starting triangle for FindNonConvexBorder(). … … 2030 2202 * \param RADIUS radius of virtual rolling sphere 2031 2203 * \param *LC LinkedCell structure with neighbouring TesselPoint's 2032 */ 2033 void Tesselation::FindStartingTriangle(const double RADIUS, const LinkedCell *LC) 2034 { 2035 Info FunctionInfo(__func__); 2204 * \return true - a starting triangle has been created, false - no valid triple of points found 2205 */ 2206 bool Tesselation::FindStartingTriangle(const double RADIUS, const LinkedCell *LC) 2207 { 2208 Info FunctionInfo(__func__); 2036 2209 int i = 0; 2037 2210 TesselPoint* MaxPoint[NDIM]; 2038 2211 TesselPoint* Temporary; 2039 2212 double maxCoordinate[NDIM]; 2040 BoundaryLineSet BaseLine;2213 BoundaryLineSet *BaseLine = NULL; 2041 2214 Vector helper; 2042 2215 Vector Chord; 2043 2216 Vector SearchDirection; 2044 Vector CircleCenter; // center of the circle, i.e. of the band of sphere's centers2217 Vector CircleCenter; // center of the circle, i.e. of the band of sphere's centers 2045 2218 Vector CirclePlaneNormal; // normal vector defining the plane this circle lives in 2046 2219 Vector SphereCenter; … … 2055 2228 2056 2229 // 1. searching topmost point with respect to each axis 2057 for (int i =0;i<NDIM;i++) { // each axis2058 LC->n[i] = LC->N[i] -1; // current axis is topmost cell2059 for (LC->n[(i +1)%NDIM]=0;LC->n[(i+1)%NDIM]<LC->N[(i+1)%NDIM];LC->n[(i+1)%NDIM]++)2060 for (LC->n[(i +2)%NDIM]=0;LC->n[(i+2)%NDIM]<LC->N[(i+2)%NDIM];LC->n[(i+2)%NDIM]++) {2061 const Linked Nodes *List = LC->GetCurrentCell();2230 for (int i = 0; i < NDIM; i++) { // each axis 2231 LC->n[i] = LC->N[i] - 1; // current axis is topmost cell 2232 for (LC->n[(i + 1) % NDIM] = 0; LC->n[(i + 1) % NDIM] < LC->N[(i + 1) % NDIM]; LC->n[(i + 1) % NDIM]++) 2233 for (LC->n[(i + 2) % NDIM] = 0; LC->n[(i + 2) % NDIM] < LC->N[(i + 2) % NDIM]; LC->n[(i + 2) % NDIM]++) { 2234 const LinkedCell::LinkedNodes *List = LC->GetCurrentCell(); 2062 2235 //Log() << Verbose(1) << "Current cell is " << LC->n[0] << ", " << LC->n[1] << ", " << LC->n[2] << " with No. " << LC->index << "." << endl; 2063 2236 if (List != NULL) { 2064 for (Linked Nodes::const_iterator Runner = List->begin();Runner != List->end();Runner++) {2065 if ((*Runner)->node-> x[i]> maxCoordinate[i]) {2066 Log() << Verbose(1) << "New maximal for axis " << i << " node is " << *(*Runner) << " at " << *(*Runner)->node << "." << endl;2067 maxCoordinate[i] = (*Runner)->node-> x[i];2237 for (LinkedCell::LinkedNodes::const_iterator Runner = List->begin(); Runner != List->end(); Runner++) { 2238 if ((*Runner)->node->at(i) > maxCoordinate[i]) { 2239 DoLog(1) && (Log() << Verbose(1) << "New maximal for axis " << i << " node is " << *(*Runner) << " at " << *(*Runner)->node << "." << endl); 2240 maxCoordinate[i] = (*Runner)->node->at(i); 2068 2241 MaxPoint[i] = (*Runner); 2069 2242 } 2070 2243 } 2071 2244 } else { 2072 eLog() << Verbose(1) << "The current cell " << LC->n[0] << "," << LC->n[1] << "," << LC->n[2] << " is invalid!" << endl;2245 DoeLog(1) && (eLog() << Verbose(1) << "The current cell " << LC->n[0] << "," << LC->n[1] << "," << LC->n[2] << " is invalid!" << endl); 2073 2246 } 2074 2247 } 2075 2248 } 2076 2249 2077 Log() << Verbose(1) << "Found maximum coordinates: ";2078 for (int i =0;i<NDIM;i++)2079 Log() << Verbose(0) << i << ": " << *MaxPoint[i] << "\t";2080 Log() << Verbose(0) << endl;2250 DoLog(1) && (Log() << Verbose(1) << "Found maximum coordinates: "); 2251 for (int i = 0; i < NDIM; i++) 2252 DoLog(0) && (Log() << Verbose(0) << i << ": " << *MaxPoint[i] << "\t"); 2253 DoLog(0) && (Log() << Verbose(0) << endl); 2081 2254 2082 2255 BTS = NULL; 2083 for (int k =0;k<NDIM;k++) {2256 for (int k = 0; k < NDIM; k++) { 2084 2257 NormalVector.Zero(); 2085 NormalVector.x[k] = 1.; 2086 BaseLine.endpoints[0] = new BoundaryPointSet(MaxPoint[k]); 2087 Log() << Verbose(0) << "Coordinates of start node at " << *BaseLine.endpoints[0]->node << "." << endl; 2258 NormalVector[k] = 1.; 2259 BaseLine = new BoundaryLineSet(); 2260 BaseLine->endpoints[0] = new BoundaryPointSet(MaxPoint[k]); 2261 DoLog(0) && (Log() << Verbose(0) << "Coordinates of start node at " << *BaseLine->endpoints[0]->node << "." << endl); 2088 2262 2089 2263 double ShortestAngle; 2090 2264 ShortestAngle = 999999.; // This will contain the angle, which will be always positive (when looking for second point), when looking for third point this will be the quadrant. 2091 2265 2092 FindSecondPointForTesselation(BaseLine.endpoints[0]->node, NormalVector, Temporary, &ShortestAngle, RADIUS, LC); // we give same point as next candidate as its bonds are looked into in find_second_... 2093 if (Temporary == NULL) // have we found a second point? 2266 Temporary = NULL; 2267 FindSecondPointForTesselation(BaseLine->endpoints[0]->node, NormalVector, Temporary, &ShortestAngle, RADIUS, LC); // we give same point as next candidate as its bonds are looked into in find_second_... 2268 if (Temporary == NULL) { 2269 // have we found a second point? 2270 delete BaseLine; 2094 2271 continue; 2095 BaseLine.endpoints[1] = new BoundaryPointSet(Temporary); 2272 } 2273 BaseLine->endpoints[1] = new BoundaryPointSet(Temporary); 2096 2274 2097 2275 // construct center of circle 2098 CircleCenter.CopyVector(BaseLine.endpoints[0]->node->node); 2099 CircleCenter.AddVector(BaseLine.endpoints[1]->node->node); 2100 CircleCenter.Scale(0.5); 2276 CircleCenter = 0.5 * ((*BaseLine->endpoints[0]->node->node) + (*BaseLine->endpoints[1]->node->node)); 2101 2277 2102 2278 // construct normal vector of circle 2103 CirclePlaneNormal.CopyVector(BaseLine.endpoints[0]->node->node); 2104 CirclePlaneNormal.SubtractVector(BaseLine.endpoints[1]->node->node); 2279 CirclePlaneNormal = (*BaseLine->endpoints[0]->node->node) - (*BaseLine->endpoints[1]->node->node); 2105 2280 2106 2281 double radius = CirclePlaneNormal.NormSquared(); 2107 double CircleRadius = sqrt(RADIUS *RADIUS - radius/4.);2108 2109 NormalVector.ProjectOntoPlane( &CirclePlaneNormal);2282 double CircleRadius = sqrt(RADIUS * RADIUS - radius / 4.); 2283 2284 NormalVector.ProjectOntoPlane(CirclePlaneNormal); 2110 2285 NormalVector.Normalize(); 2111 ShortestAngle = 2.*M_PI; // This will indicate the quadrant. 2112 2113 SphereCenter.CopyVector(&NormalVector); 2114 SphereCenter.Scale(CircleRadius); 2115 SphereCenter.AddVector(&CircleCenter); 2286 ShortestAngle = 2. * M_PI; // This will indicate the quadrant. 2287 2288 SphereCenter = (CircleRadius * NormalVector) + CircleCenter; 2116 2289 // Now, NormalVector and SphereCenter are two orthonormalized vectors in the plane defined by CirclePlaneNormal (not normalized) 2117 2290 2118 2291 // look in one direction of baseline for initial candidate 2119 SearchDirection .MakeNormalVector(&CirclePlaneNormal, &NormalVector); // whether we look "left" first or "right" first is not important ...2292 SearchDirection = Plane(CirclePlaneNormal, NormalVector,0).getNormal(); // whether we look "left" first or "right" first is not important ... 2120 2293 2121 2294 // adding point 1 and point 2 and add the line between them 2122 Log() << Verbose(0) << "Coordinates of start node at " << *BaseLine.endpoints[0]->node << "." << endl;2123 Log() << Verbose(0) << "Found second point is at " << *BaseLine.endpoints[1]->node << ".\n";2295 DoLog(0) && (Log() << Verbose(0) << "Coordinates of start node at " << *BaseLine->endpoints[0]->node << "." << endl); 2296 DoLog(0) && (Log() << Verbose(0) << "Found second point is at " << *BaseLine->endpoints[1]->node << ".\n"); 2124 2297 2125 2298 //Log() << Verbose(1) << "INFO: OldSphereCenter is at " << helper << ".\n"; 2126 CandidateForTesselation OptCandidates( &BaseLine);2299 CandidateForTesselation OptCandidates(BaseLine); 2127 2300 FindThirdPointForTesselation(NormalVector, SearchDirection, SphereCenter, OptCandidates, NULL, RADIUS, LC); 2128 Log() << Verbose(0) << "List of third Points is:" << endl;2301 DoLog(0) && (Log() << Verbose(0) << "List of third Points is:" << endl); 2129 2302 for (TesselPointList::iterator it = OptCandidates.pointlist.begin(); it != OptCandidates.pointlist.end(); it++) { 2130 Log() << Verbose(0) << " " << *(*it) << endl; 2131 } 2132 2133 BTS = NULL; 2134 AddCandidateTriangle(OptCandidates); 2135 // delete(BaseLine.endpoints[0]); 2136 // delete(BaseLine.endpoints[1]); 2137 2138 if (BTS != NULL) // we have created one starting triangle 2303 DoLog(0) && (Log() << Verbose(0) << " " << *(*it) << endl); 2304 } 2305 if (!OptCandidates.pointlist.empty()) { 2306 BTS = NULL; 2307 AddCandidatePolygon(OptCandidates, RADIUS, LC); 2308 } else { 2309 delete BaseLine; 2310 continue; 2311 } 2312 2313 if (BTS != NULL) { // we have created one starting triangle 2314 delete BaseLine; 2139 2315 break; 2140 else {2316 } else { 2141 2317 // remove all candidates from the list and then the list itself 2142 2318 OptCandidates.pointlist.clear(); 2143 2319 } 2144 } 2145 }; 2320 delete BaseLine; 2321 } 2322 2323 return (BTS != NULL); 2324 } 2325 ; 2146 2326 2147 2327 /** Checks for a given baseline and a third point candidate whether baselines of the found triangle don't have even better candidates. … … 2214 2394 // if (fabs(OldSphereCenter.ScalarProduct(&SearchDirection)) > HULLEPSILON) { 2215 2395 // // rotated the wrong way! 2216 // eLog() << Verbose(1) << "SearchDirection and RelativeOldSphereCenter are still not orthogonal!" << endl;2396 // DoeLog(1) && (eLog()<< Verbose(1) << "SearchDirection and RelativeOldSphereCenter are still not orthogonal!" << endl); 2217 2397 // } 2218 2398 // … … 2271 2451 // } 2272 2452 // } else { 2273 // eLog() << Verbose(2) << "Baseline is connected to two triangles already?" << endl;2453 // DoeLog(2) && (eLog()<< Verbose(2) << "Baseline is connected to two triangles already?" << endl); 2274 2454 // } 2275 2455 // } else { … … 2278 2458 // } 2279 2459 // } else { 2280 // eLog() << Verbose(1) << "Could not find the TesselPoint " << *ThirdNode << "." << endl;2460 // DoeLog(1) && (eLog()<< Verbose(1) << "Could not find the TesselPoint " << *ThirdNode << "." << endl); 2281 2461 // } 2282 2462 // … … 2292 2472 * @param *LC LinkedCell structure with neighbouring points 2293 2473 */ 2294 bool Tesselation::FindNextSuitableTriangle(CandidateForTesselation &CandidateLine, BoundaryTriangleSet &T, const double& RADIUS, const LinkedCell *LC) 2295 { 2296 Info FunctionInfo(__func__); 2297 bool result = true; 2298 2474 bool Tesselation::FindNextSuitableTriangle(CandidateForTesselation &CandidateLine, const BoundaryTriangleSet &T, const double& RADIUS, const LinkedCell *LC) 2475 { 2476 Info FunctionInfo(__func__); 2299 2477 Vector CircleCenter; 2300 2478 Vector CirclePlaneNormal; … … 2302 2480 Vector SearchDirection; 2303 2481 Vector helper; 2304 TesselPoint *ThirdNode= NULL;2482 BoundaryPointSet *ThirdPoint = NULL; 2305 2483 LineMap::iterator testline; 2306 2484 double radius, CircleRadius; 2307 2485 2308 for (int i =0;i<3;i++)2309 if ((T.endpoints[i] ->node != CandidateLine.BaseLine->endpoints[0]->node) && (T.endpoints[i]->node != CandidateLine.BaseLine->endpoints[1]->node)) {2310 Third Node = T.endpoints[i]->node;2486 for (int i = 0; i < 3; i++) 2487 if ((T.endpoints[i] != CandidateLine.BaseLine->endpoints[0]) && (T.endpoints[i] != CandidateLine.BaseLine->endpoints[1])) { 2488 ThirdPoint = T.endpoints[i]; 2311 2489 break; 2312 2490 } 2313 Log() << Verbose(0) << "Current baseline is " << *CandidateLine.BaseLine << " with ThirdNode " << *ThirdNode << " of triangle " << T << "." << endl; 2491 DoLog(0) && (Log() << Verbose(0) << "Current baseline is " << *CandidateLine.BaseLine << " with ThirdPoint " << *ThirdPoint << " of triangle " << T << "." << endl); 2492 2493 CandidateLine.T = &T; 2314 2494 2315 2495 // construct center of circle 2316 CircleCenter.CopyVector(CandidateLine.BaseLine->endpoints[0]->node->node); 2317 CircleCenter.AddVector(CandidateLine.BaseLine->endpoints[1]->node->node); 2318 CircleCenter.Scale(0.5); 2496 CircleCenter = 0.5 * ((*CandidateLine.BaseLine->endpoints[0]->node->node) + 2497 (*CandidateLine.BaseLine->endpoints[1]->node->node)); 2319 2498 2320 2499 // construct normal vector of circle 2321 CirclePlaneNormal .CopyVector(CandidateLine.BaseLine->endpoints[0]->node->node);2322 CirclePlaneNormal.SubtractVector(CandidateLine.BaseLine->endpoints[1]->node->node);2500 CirclePlaneNormal = (*CandidateLine.BaseLine->endpoints[0]->node->node) - 2501 (*CandidateLine.BaseLine->endpoints[1]->node->node); 2323 2502 2324 2503 // calculate squared radius of circle 2325 radius = CirclePlaneNormal.ScalarProduct( &CirclePlaneNormal);2326 if (radius /4. < RADIUS*RADIUS) {2504 radius = CirclePlaneNormal.ScalarProduct(CirclePlaneNormal); 2505 if (radius / 4. < RADIUS * RADIUS) { 2327 2506 // construct relative sphere center with now known CircleCenter 2328 RelativeSphereCenter.CopyVector(&T.SphereCenter); 2329 RelativeSphereCenter.SubtractVector(&CircleCenter); 2330 2331 CircleRadius = RADIUS*RADIUS - radius/4.; 2507 RelativeSphereCenter = T.SphereCenter - CircleCenter; 2508 2509 CircleRadius = RADIUS * RADIUS - radius / 4.; 2332 2510 CirclePlaneNormal.Normalize(); 2333 Log() << Verbose(1) << "INFO: CircleCenter is at " << CircleCenter << ", CirclePlaneNormal is " << CirclePlaneNormal << " with circle radius " << sqrt(CircleRadius) << "." << endl;2334 2335 Log() << Verbose(1) << "INFO: OldSphereCenter is at " << T.SphereCenter << "." << endl;2511 DoLog(1) && (Log() << Verbose(1) << "INFO: CircleCenter is at " << CircleCenter << ", CirclePlaneNormal is " << CirclePlaneNormal << " with circle radius " << sqrt(CircleRadius) << "." << endl); 2512 2513 DoLog(1) && (Log() << Verbose(1) << "INFO: OldSphereCenter is at " << T.SphereCenter << "." << endl); 2336 2514 2337 2515 // construct SearchDirection and an "outward pointer" 2338 SearchDirection.MakeNormalVector(&RelativeSphereCenter, &CirclePlaneNormal); 2339 helper.CopyVector(&CircleCenter); 2340 helper.SubtractVector(ThirdNode->node); 2341 if (helper.ScalarProduct(&SearchDirection) < -HULLEPSILON)// ohoh, SearchDirection points inwards! 2516 SearchDirection = Plane(RelativeSphereCenter, CirclePlaneNormal,0).getNormal(); 2517 helper = CircleCenter - (*ThirdPoint->node->node); 2518 if (helper.ScalarProduct(SearchDirection) < -HULLEPSILON)// ohoh, SearchDirection points inwards! 2342 2519 SearchDirection.Scale(-1.); 2343 Log() << Verbose(1) << "INFO: SearchDirection is " << SearchDirection << "." << endl;2344 if (fabs(RelativeSphereCenter.ScalarProduct( &SearchDirection)) > HULLEPSILON) {2520 DoLog(1) && (Log() << Verbose(1) << "INFO: SearchDirection is " << SearchDirection << "." << endl); 2521 if (fabs(RelativeSphereCenter.ScalarProduct(SearchDirection)) > HULLEPSILON) { 2345 2522 // rotated the wrong way! 2346 eLog() << Verbose(1) << "SearchDirection and RelativeOldSphereCenter are still not orthogonal!" << endl;2523 DoeLog(1) && (eLog() << Verbose(1) << "SearchDirection and RelativeOldSphereCenter are still not orthogonal!" << endl); 2347 2524 } 2348 2525 2349 2526 // add third point 2350 FindThirdPointForTesselation(T.NormalVector, SearchDirection, T.SphereCenter, CandidateLine, Third Node, RADIUS, LC);2527 FindThirdPointForTesselation(T.NormalVector, SearchDirection, T.SphereCenter, CandidateLine, ThirdPoint, RADIUS, LC); 2351 2528 2352 2529 } else { 2353 Log() << Verbose(0) << "Circumcircle for base line " << *CandidateLine.BaseLine << " and base triangle " << T << " is too big!" << endl;2530 DoLog(0) && (Log() << Verbose(0) << "Circumcircle for base line " << *CandidateLine.BaseLine << " and base triangle " << T << " is too big!" << endl); 2354 2531 } 2355 2532 2356 2533 if (CandidateLine.pointlist.empty()) { 2357 eLog() << Verbose(2) << "Could not find a suitable candidate." << endl;2534 DoeLog(2) && (eLog() << Verbose(2) << "Could not find a suitable candidate." << endl); 2358 2535 return false; 2359 2536 } 2360 Log() << Verbose(0) << "Third Points are: " << endl;2537 DoLog(0) && (Log() << Verbose(0) << "Third Points are: " << endl); 2361 2538 for (TesselPointList::iterator it = CandidateLine.pointlist.begin(); it != CandidateLine.pointlist.end(); ++it) { 2362 Log() << Verbose(0) << " " << *(*it) << endl;2539 DoLog(0) && (Log() << Verbose(0) << " " << *(*it) << endl); 2363 2540 } 2364 2541 2365 2542 return true; 2366 2367 // BoundaryLineSet *BaseRay = CandidateLine.BaseLine; 2368 // for (CandidateList::iterator it = OptCandidates->begin(); it != OptCandidates->end(); ++it) { 2369 // Log() << Verbose(0) << "Third point candidate is " << *(*it)->point 2370 // << " with circumsphere's center at " << (*it)->OptCenter << "." << endl; 2371 // Log() << Verbose(0) << "Baseline is " << *BaseRay << endl; 2372 // 2373 // // check whether all edges of the new triangle still have space for one more triangle (i.e. TriangleCount <2) 2374 // TesselPoint *PointCandidates[3]; 2375 // PointCandidates[0] = (*it)->point; 2376 // PointCandidates[1] = BaseRay->endpoints[0]->node; 2377 // PointCandidates[2] = BaseRay->endpoints[1]->node; 2378 // int existentTrianglesCount = CheckPresenceOfTriangle(PointCandidates); 2379 // 2380 // BTS = NULL; 2381 // // check for present edges and whether we reach better candidates from them 2382 // //if (HasOtherBaselineBetterCandidate(BaseRay, (*it)->point, ShortestAngle, RADIUS, LC) ) { 2383 // if (0) { 2384 // result = false; 2385 // break; 2386 // } else { 2387 // // If there is no triangle, add it regularly. 2388 // if (existentTrianglesCount == 0) { 2389 // AddTesselationPoint((*it)->point, 0); 2390 // AddTesselationPoint(BaseRay->endpoints[0]->node, 1); 2391 // AddTesselationPoint(BaseRay->endpoints[1]->node, 2); 2392 // 2393 // if (CheckLineCriteriaForDegeneratedTriangle((const BoundaryPointSet ** const )TPS)) { 2394 // CandidateLine.point = (*it)->point; 2395 // CandidateLine.OptCenter.CopyVector(&((*it)->OptCenter)); 2396 // CandidateLine.OtherOptCenter.CopyVector(&((*it)->OtherOptCenter)); 2397 // CandidateLine.ShortestAngle = ShortestAngle; 2398 // } else { 2399 //// eLog() << Verbose(1) << "This triangle consisting of "; 2400 //// Log() << Verbose(0) << *(*it)->point << ", "; 2401 //// Log() << Verbose(0) << *BaseRay->endpoints[0]->node << " and "; 2402 //// Log() << Verbose(0) << *BaseRay->endpoints[1]->node << " "; 2403 //// Log() << Verbose(0) << "exists and is not added, as it 0x80000000006fc150(does not seem helpful!" << endl; 2404 // result = false; 2405 // } 2406 // } else if ((existentTrianglesCount >= 1) && (existentTrianglesCount <= 3)) { // If there is a planar region within the structure, we need this triangle a second time. 2407 // AddTesselationPoint((*it)->point, 0); 2408 // AddTesselationPoint(BaseRay->endpoints[0]->node, 1); 2409 // AddTesselationPoint(BaseRay->endpoints[1]->node, 2); 2410 // 2411 // // We demand that at most one new degenerate line is created and that this line also already exists (which has to be the case due to existentTrianglesCount == 1) 2412 // // i.e. at least one of the three lines must be present with TriangleCount <= 1 2413 // if (CheckLineCriteriaForDegeneratedTriangle((const BoundaryPointSet ** const)TPS) || CandidateLine.BaseLine->skipped) { 2414 // CandidateLine.point = (*it)->point; 2415 // CandidateLine.OptCenter.CopyVector(&(*it)->OptCenter); 2416 // CandidateLine.OtherOptCenter.CopyVector(&(*it)->OtherOptCenter); 2417 // CandidateLine.ShortestAngle = ShortestAngle+2.*M_PI; 2418 // 2419 // } else { 2420 //// eLog() << Verbose(1) << "This triangle consisting of " << *(*it)->point << ", " << *BaseRay->endpoints[0]->node << " and " << *BaseRay->endpoints[1]->node << " " << "exists and is not added, as it does not seem helpful!" << endl; 2421 // result = false; 2422 // } 2423 // } else { 2424 //// Log() << Verbose(1) << "This triangle consisting of "; 2425 //// Log() << Verbose(0) << *(*it)->point << ", "; 2426 //// Log() << Verbose(0) << *BaseRay->endpoints[0]->node << " and "; 2427 //// Log() << Verbose(0) << *BaseRay->endpoints[1]->node << " "; 2428 //// Log() << Verbose(0) << "is invalid!" << endl; 2429 // result = false; 2430 // } 2431 // } 2432 // 2433 // // set baseline to new ray from ref point (here endpoints[0]->node) to current candidate (here (*it)->point)) 2434 // BaseRay = BLS[0]; 2435 // if ((BTS != NULL) && (BTS->NormalVector.NormSquared() < MYEPSILON)) { 2436 // eLog() << Verbose(1) << "Triangle " << *BTS << " has zero normal vector!" << endl; 2437 // exit(255); 2438 // } 2439 // 2440 // } 2441 // 2442 // // remove all candidates from the list and then the list itself 2443 // class CandidateForTesselation *remover = NULL; 2444 // for (CandidateList::iterator it = OptCandidates->begin(); it != OptCandidates->end(); ++it) { 2445 // remover = *it; 2446 // delete(remover); 2447 // } 2448 // delete(OptCandidates); 2449 return result; 2450 }; 2543 } 2544 ; 2545 2546 /** Walks through Tesselation::OpenLines() and finds candidates for newly created ones. 2547 * \param *&LCList atoms in LinkedCell list 2548 * \param RADIUS radius of the virtual sphere 2549 * \return true - for all open lines without candidates so far, a candidate has been found, 2550 * false - at least one open line without candidate still 2551 */ 2552 bool Tesselation::FindCandidatesforOpenLines(const double RADIUS, const LinkedCell *&LCList) 2553 { 2554 bool TesselationFailFlag = true; 2555 CandidateForTesselation *baseline = NULL; 2556 BoundaryTriangleSet *T = NULL; 2557 2558 for (CandidateMap::iterator Runner = OpenLines.begin(); Runner != OpenLines.end(); Runner++) { 2559 baseline = Runner->second; 2560 if (baseline->pointlist.empty()) { 2561 assert((baseline->BaseLine->triangles.size() == 1) && ("Open line without exactly one attached triangle")); 2562 T = (((baseline->BaseLine->triangles.begin()))->second); 2563 DoLog(1) && (Log() << Verbose(1) << "Finding best candidate for open line " << *baseline->BaseLine << " of triangle " << *T << endl); 2564 TesselationFailFlag = TesselationFailFlag && FindNextSuitableTriangle(*baseline, *T, RADIUS, LCList); //the line is there, so there is a triangle, but only one. 2565 } 2566 } 2567 return TesselationFailFlag; 2568 } 2569 ; 2451 2570 2452 2571 /** Adds the present line and candidate point from \a &CandidateLine to the Tesselation. 2453 2572 * \param CandidateLine triangle to add 2454 * \NOTE we need the copy operator here as the original CandidateForTesselation is removed in AddTesselationLine() 2455 */ 2456 void Tesselation::AddCandidateTriangle(CandidateForTesselation CandidateLine) 2457 { 2458 Info FunctionInfo(__func__); 2573 * \param RADIUS Radius of sphere 2574 * \param *LC LinkedCell structure 2575 * \NOTE we need the copy operator here as the original CandidateForTesselation is removed in 2576 * AddTesselationLine() in AddCandidateTriangle() 2577 */ 2578 void Tesselation::AddCandidatePolygon(CandidateForTesselation CandidateLine, const double RADIUS, const LinkedCell *LC) 2579 { 2580 Info FunctionInfo(__func__); 2459 2581 Vector Center; 2460 2582 TesselPoint * const TurningPoint = CandidateLine.BaseLine->endpoints[0]->node; 2583 TesselPointList::iterator Runner; 2584 TesselPointList::iterator Sprinter; 2461 2585 2462 2586 // fill the set of neighbours … … 2467 2591 TesselPointList *connectedClosestPoints = GetCircleOfSetOfPoints(&SetOfNeighbours, TurningPoint, CandidateLine.BaseLine->endpoints[1]->node->node); 2468 2592 2593 DoLog(0) && (Log() << Verbose(0) << "List of Candidates for Turning Point " << *TurningPoint << ":" << endl); 2594 for (TesselPointList::iterator TesselRunner = connectedClosestPoints->begin(); TesselRunner != connectedClosestPoints->end(); ++TesselRunner) 2595 DoLog(0) && (Log() << Verbose(0) << " " << **TesselRunner << endl); 2596 2469 2597 // go through all angle-sorted candidates (in degenerate n-nodes case we may have to add multiple triangles) 2470 Log() << Verbose(0) << "List of Candidates for Turning Point: " << *TurningPoint << "." << endl; 2471 for (TesselPointList::iterator TesselRunner = connectedClosestPoints->begin(); TesselRunner != connectedClosestPoints->end(); ++TesselRunner) 2472 Log() << Verbose(0) << **TesselRunner << endl; 2473 TesselPointList::iterator Runner = connectedClosestPoints->begin(); 2474 TesselPointList::iterator Sprinter = Runner; 2598 Runner = connectedClosestPoints->begin(); 2599 Sprinter = Runner; 2475 2600 Sprinter++; 2476 while(Sprinter != connectedClosestPoints->end()) { 2477 // add the points 2601 while (Sprinter != connectedClosestPoints->end()) { 2602 DoLog(0) && (Log() << Verbose(0) << "Current Runner is " << *(*Runner) << " and sprinter is " << *(*Sprinter) << "." << endl); 2603 2478 2604 AddTesselationPoint(TurningPoint, 0); 2479 AddTesselationPoint((*Runner), 1); 2480 AddTesselationPoint((*Sprinter), 2); 2481 2482 // add the lines 2483 AddTesselationLine(TPS[0], TPS[1], 0); 2484 AddTesselationLine(TPS[0], TPS[2], 1); 2485 AddTesselationLine(TPS[1], TPS[2], 2); 2486 2487 // add the triangles 2488 BTS = new class BoundaryTriangleSet(BLS, TrianglesOnBoundaryCount); 2489 AddTesselationTriangle(); 2490 BTS->GetCenter(&Center); 2491 Center.SubtractVector(&CandidateLine.OptCenter); 2492 BTS->SphereCenter.CopyVector(&CandidateLine.OptCenter); 2493 BTS->GetNormalVector(Center); 2494 2495 Log() << Verbose(0) << "--> New triangle with " << *BTS << " and normal vector " << BTS->NormalVector << "." << endl; 2605 AddTesselationPoint(*Runner, 1); 2606 AddTesselationPoint(*Sprinter, 2); 2607 2608 AddCandidateTriangle(CandidateLine, Opt); 2609 2496 2610 Runner = Sprinter; 2497 2611 Sprinter++; 2498 Log() << Verbose(0) << "Current Runner is " << **Runner << "." << endl; 2499 if (Sprinter != connectedClosestPoints->end()) 2500 Log() << Verbose(0) << " There are still more triangles to add." << endl; 2501 } 2502 delete(connectedClosestPoints); 2612 if (Sprinter != connectedClosestPoints->end()) { 2613 // fill the internal open lines with its respective candidate (otherwise lines in degenerate case are not picked) 2614 FindDegeneratedCandidatesforOpenLines(*Sprinter, &CandidateLine.OptCenter); // Assume BTS contains last triangle 2615 DoLog(0) && (Log() << Verbose(0) << " There are still more triangles to add." << endl); 2616 } 2617 // pick candidates for other open lines as well 2618 FindCandidatesforOpenLines(RADIUS, LC); 2619 2620 // check whether we add a degenerate or a normal triangle 2621 if (CheckDegeneracy(CandidateLine, RADIUS, LC)) { 2622 // add normal and degenerate triangles 2623 DoLog(1) && (Log() << Verbose(1) << "Triangle of endpoints " << *TPS[0] << "," << *TPS[1] << " and " << *TPS[2] << " is degenerated, adding both sides." << endl); 2624 AddCandidateTriangle(CandidateLine, OtherOpt); 2625 2626 if (Sprinter != connectedClosestPoints->end()) { 2627 // fill the internal open lines with its respective candidate (otherwise lines in degenerate case are not picked) 2628 FindDegeneratedCandidatesforOpenLines(*Sprinter, &CandidateLine.OtherOptCenter); 2629 } 2630 // pick candidates for other open lines as well 2631 FindCandidatesforOpenLines(RADIUS, LC); 2632 } 2633 } 2634 delete (connectedClosestPoints); 2503 2635 }; 2636 2637 /** for polygons (multiple candidates for a baseline) sets internal edges to the correct next candidate. 2638 * \param *Sprinter next candidate to which internal open lines are set 2639 * \param *OptCenter OptCenter for this candidate 2640 */ 2641 void Tesselation::FindDegeneratedCandidatesforOpenLines(TesselPoint * const Sprinter, const Vector * const OptCenter) 2642 { 2643 Info FunctionInfo(__func__); 2644 2645 pair<LineMap::iterator, LineMap::iterator> FindPair = TPS[0]->lines.equal_range(TPS[2]->node->nr); 2646 for (LineMap::const_iterator FindLine = FindPair.first; FindLine != FindPair.second; FindLine++) { 2647 DoLog(1) && (Log() << Verbose(1) << "INFO: Checking line " << *(FindLine->second) << " ..." << endl); 2648 // If there is a line with less than two attached triangles, we don't need a new line. 2649 if (FindLine->second->triangles.size() == 1) { 2650 CandidateMap::iterator Finder = OpenLines.find(FindLine->second); 2651 if (!Finder->second->pointlist.empty()) 2652 DoLog(1) && (Log() << Verbose(1) << "INFO: line " << *(FindLine->second) << " is open with candidate " << **(Finder->second->pointlist.begin()) << "." << endl); 2653 else { 2654 DoLog(1) && (Log() << Verbose(1) << "INFO: line " << *(FindLine->second) << " is open with no candidate, setting to next Sprinter" << (*Sprinter) << endl); 2655 Finder->second->T = BTS; // is last triangle 2656 Finder->second->pointlist.push_back(Sprinter); 2657 Finder->second->ShortestAngle = 0.; 2658 Finder->second->OptCenter = *OptCenter; 2659 } 2660 } 2661 } 2662 }; 2663 2664 /** If a given \a *triangle is degenerated, this adds both sides. 2665 * i.e. the triangle with same BoundaryPointSet's but NormalVector in opposite direction. 2666 * Note that endpoints are stored in Tesselation::TPS 2667 * \param CandidateLine CanddiateForTesselation structure for the desired BoundaryLine 2668 * \param RADIUS radius of sphere 2669 * \param *LC pointer to LinkedCell structure 2670 */ 2671 void Tesselation::AddDegeneratedTriangle(CandidateForTesselation &CandidateLine, const double RADIUS, const LinkedCell *LC) 2672 { 2673 Info FunctionInfo(__func__); 2674 Vector Center; 2675 CandidateMap::const_iterator CandidateCheck = OpenLines.end(); 2676 BoundaryTriangleSet *triangle = NULL; 2677 2678 /// 1. Create or pick the lines for the first triangle 2679 DoLog(0) && (Log() << Verbose(0) << "INFO: Creating/Picking lines for first triangle ..." << endl); 2680 for (int i = 0; i < 3; i++) { 2681 BLS[i] = NULL; 2682 DoLog(0) && (Log() << Verbose(0) << "Current line is between " << *TPS[(i + 0) % 3] << " and " << *TPS[(i + 1) % 3] << ":" << endl); 2683 AddTesselationLine(&CandidateLine.OptCenter, TPS[(i + 2) % 3], TPS[(i + 0) % 3], TPS[(i + 1) % 3], i); 2684 } 2685 2686 /// 2. create the first triangle and NormalVector and so on 2687 DoLog(0) && (Log() << Verbose(0) << "INFO: Adding first triangle with center at " << CandidateLine.OptCenter << " ..." << endl); 2688 BTS = new class BoundaryTriangleSet(BLS, TrianglesOnBoundaryCount); 2689 AddTesselationTriangle(); 2690 2691 // create normal vector 2692 BTS->GetCenter(&Center); 2693 Center -= CandidateLine.OptCenter; 2694 BTS->SphereCenter = CandidateLine.OptCenter; 2695 BTS->GetNormalVector(Center); 2696 // give some verbose output about the whole procedure 2697 if (CandidateLine.T != NULL) 2698 DoLog(0) && (Log() << Verbose(0) << "--> New triangle with " << *BTS << " and normal vector " << BTS->NormalVector << ", from " << *CandidateLine.T << " and angle " << CandidateLine.ShortestAngle << "." << endl); 2699 else 2700 DoLog(0) && (Log() << Verbose(0) << "--> New starting triangle with " << *BTS << " and normal vector " << BTS->NormalVector << " and no top triangle." << endl); 2701 triangle = BTS; 2702 2703 /// 3. Gather candidates for each new line 2704 DoLog(0) && (Log() << Verbose(0) << "INFO: Adding candidates to new lines ..." << endl); 2705 for (int i = 0; i < 3; i++) { 2706 DoLog(0) && (Log() << Verbose(0) << "Current line is between " << *TPS[(i + 0) % 3] << " and " << *TPS[(i + 1) % 3] << ":" << endl); 2707 CandidateCheck = OpenLines.find(BLS[i]); 2708 if ((CandidateCheck != OpenLines.end()) && (CandidateCheck->second->pointlist.empty())) { 2709 if (CandidateCheck->second->T == NULL) 2710 CandidateCheck->second->T = triangle; 2711 FindNextSuitableTriangle(*(CandidateCheck->second), *CandidateCheck->second->T, RADIUS, LC); 2712 } 2713 } 2714 2715 /// 4. Create or pick the lines for the second triangle 2716 DoLog(0) && (Log() << Verbose(0) << "INFO: Creating/Picking lines for second triangle ..." << endl); 2717 for (int i = 0; i < 3; i++) { 2718 DoLog(0) && (Log() << Verbose(0) << "Current line is between " << *TPS[(i + 0) % 3] << " and " << *TPS[(i + 1) % 3] << ":" << endl); 2719 AddTesselationLine(&CandidateLine.OtherOptCenter, TPS[(i + 2) % 3], TPS[(i + 0) % 3], TPS[(i + 1) % 3], i); 2720 } 2721 2722 /// 5. create the second triangle and NormalVector and so on 2723 DoLog(0) && (Log() << Verbose(0) << "INFO: Adding second triangle with center at " << CandidateLine.OtherOptCenter << " ..." << endl); 2724 BTS = new class BoundaryTriangleSet(BLS, TrianglesOnBoundaryCount); 2725 AddTesselationTriangle(); 2726 2727 BTS->SphereCenter = CandidateLine.OtherOptCenter; 2728 // create normal vector in other direction 2729 BTS->GetNormalVector(triangle->NormalVector); 2730 BTS->NormalVector.Scale(-1.); 2731 // give some verbose output about the whole procedure 2732 if (CandidateLine.T != NULL) 2733 DoLog(0) && (Log() << Verbose(0) << "--> New degenerate triangle with " << *BTS << " and normal vector " << BTS->NormalVector << ", from " << *CandidateLine.T << " and angle " << CandidateLine.ShortestAngle << "." << endl); 2734 else 2735 DoLog(0) && (Log() << Verbose(0) << "--> New degenerate starting triangle with " << *BTS << " and normal vector " << BTS->NormalVector << " and no top triangle." << endl); 2736 2737 /// 6. Adding triangle to new lines 2738 DoLog(0) && (Log() << Verbose(0) << "INFO: Adding second triangles to new lines ..." << endl); 2739 for (int i = 0; i < 3; i++) { 2740 DoLog(0) && (Log() << Verbose(0) << "Current line is between " << *TPS[(i + 0) % 3] << " and " << *TPS[(i + 1) % 3] << ":" << endl); 2741 CandidateCheck = OpenLines.find(BLS[i]); 2742 if ((CandidateCheck != OpenLines.end()) && (CandidateCheck->second->pointlist.empty())) { 2743 if (CandidateCheck->second->T == NULL) 2744 CandidateCheck->second->T = BTS; 2745 } 2746 } 2747 } 2748 ; 2749 2750 /** Adds a triangle to the Tesselation structure from three given TesselPoint's. 2751 * Note that endpoints are in Tesselation::TPS. 2752 * \param CandidateLine CandidateForTesselation structure contains other information 2753 * \param type which opt center to add (i.e. which side) and thus which NormalVector to take 2754 */ 2755 void Tesselation::AddCandidateTriangle(CandidateForTesselation &CandidateLine, enum centers type) 2756 { 2757 Info FunctionInfo(__func__); 2758 Vector Center; 2759 Vector *OptCenter = (type == Opt) ? &CandidateLine.OptCenter : &CandidateLine.OtherOptCenter; 2760 2761 // add the lines 2762 AddTesselationLine(OptCenter, TPS[2], TPS[0], TPS[1], 0); 2763 AddTesselationLine(OptCenter, TPS[1], TPS[0], TPS[2], 1); 2764 AddTesselationLine(OptCenter, TPS[0], TPS[1], TPS[2], 2); 2765 2766 // add the triangles 2767 BTS = new class BoundaryTriangleSet(BLS, TrianglesOnBoundaryCount); 2768 AddTesselationTriangle(); 2769 2770 // create normal vector 2771 BTS->GetCenter(&Center); 2772 Center.SubtractVector(*OptCenter); 2773 BTS->SphereCenter = *OptCenter; 2774 BTS->GetNormalVector(Center); 2775 2776 // give some verbose output about the whole procedure 2777 if (CandidateLine.T != NULL) 2778 DoLog(0) && (Log() << Verbose(0) << "--> New" << ((type == OtherOpt) ? " degenerate " : " ") << "triangle with " << *BTS << " and normal vector " << BTS->NormalVector << ", from " << *CandidateLine.T << " and angle " << CandidateLine.ShortestAngle << "." << endl); 2779 else 2780 DoLog(0) && (Log() << Verbose(0) << "--> New" << ((type == OtherOpt) ? " degenerate " : " ") << "starting triangle with " << *BTS << " and normal vector " << BTS->NormalVector << " and no top triangle." << endl); 2781 } 2782 ; 2504 2783 2505 2784 /** Checks whether the quadragon of the two triangles connect to \a *Base is convex. … … 2512 2791 class BoundaryPointSet *Tesselation::IsConvexRectangle(class BoundaryLineSet *Base) 2513 2792 { 2514 Info FunctionInfo(__func__);2793 Info FunctionInfo(__func__); 2515 2794 class BoundaryPointSet *Spot = NULL; 2516 2795 class BoundaryLineSet *OtherBase; 2517 2796 Vector *ClosestPoint; 2518 2797 2519 int m =0;2520 for (TriangleMap::iterator runner = Base->triangles.begin(); runner != Base->triangles.end(); runner++)2521 for (int j =0;j<3;j++) // all of their endpoints and baselines2798 int m = 0; 2799 for (TriangleMap::iterator runner = Base->triangles.begin(); runner != Base->triangles.end(); runner++) 2800 for (int j = 0; j < 3; j++) // all of their endpoints and baselines 2522 2801 if (!Base->ContainsBoundaryPoint(runner->second->endpoints[j])) // and neither of its endpoints 2523 2802 BPS[m++] = runner->second->endpoints[j]; 2524 OtherBase = new class BoundaryLineSet(BPS, -1);2525 2526 Log() << Verbose(1) << "INFO: Current base line is " << *Base << "." << endl;2527 Log() << Verbose(1) << "INFO: Other base line is " << *OtherBase << "." << endl;2803 OtherBase = new class BoundaryLineSet(BPS, -1); 2804 2805 DoLog(1) && (Log() << Verbose(1) << "INFO: Current base line is " << *Base << "." << endl); 2806 DoLog(1) && (Log() << Verbose(1) << "INFO: Other base line is " << *OtherBase << "." << endl); 2528 2807 2529 2808 // get the closest point on each line to the other line … … 2531 2810 2532 2811 // delete the temporary other base line 2533 delete (OtherBase);2812 delete (OtherBase); 2534 2813 2535 2814 // get the distance vector from Base line to OtherBase line 2536 2815 Vector DistanceToIntersection[2], BaseLine; 2537 2816 double distance[2]; 2538 BaseLine.CopyVector(Base->endpoints[1]->node->node); 2539 BaseLine.SubtractVector(Base->endpoints[0]->node->node); 2540 for (int i=0;i<2;i++) { 2541 DistanceToIntersection[i].CopyVector(ClosestPoint); 2542 DistanceToIntersection[i].SubtractVector(Base->endpoints[i]->node->node); 2543 distance[i] = BaseLine.ScalarProduct(&DistanceToIntersection[i]); 2544 } 2545 delete(ClosestPoint); 2546 if ((distance[0] * distance[1]) > 0) { // have same sign? 2547 Log() << Verbose(1) << "REJECT: Both SKPs have same sign: " << distance[0] << " and " << distance[1] << ". " << *Base << "' rectangle is concave." << endl; 2817 BaseLine = (*Base->endpoints[1]->node->node) - (*Base->endpoints[0]->node->node); 2818 for (int i = 0; i < 2; i++) { 2819 DistanceToIntersection[i] = (*ClosestPoint) - (*Base->endpoints[i]->node->node); 2820 distance[i] = BaseLine.ScalarProduct(DistanceToIntersection[i]); 2821 } 2822 delete (ClosestPoint); 2823 if ((distance[0] * distance[1]) > 0) { // have same sign? 2824 DoLog(1) && (Log() << Verbose(1) << "REJECT: Both SKPs have same sign: " << distance[0] << " and " << distance[1] << ". " << *Base << "' rectangle is concave." << endl); 2548 2825 if (distance[0] < distance[1]) { 2549 2826 Spot = Base->endpoints[0]; … … 2552 2829 } 2553 2830 return Spot; 2554 } else { // different sign, i.e. we are in between2555 Log() << Verbose(0) << "ACCEPT: Rectangle of triangles of base line " << *Base << " is convex." << endl;2831 } else { // different sign, i.e. we are in between 2832 DoLog(0) && (Log() << Verbose(0) << "ACCEPT: Rectangle of triangles of base line " << *Base << " is convex." << endl); 2556 2833 return NULL; 2557 2834 } 2558 2835 2559 }; 2836 } 2837 ; 2560 2838 2561 2839 void Tesselation::PrintAllBoundaryPoints(ofstream *out) const 2562 2840 { 2563 Info FunctionInfo(__func__);2841 Info FunctionInfo(__func__); 2564 2842 // print all lines 2565 Log() << Verbose(0) << "Printing all boundary points for debugging:" << endl; 2566 for (PointMap::const_iterator PointRunner = PointsOnBoundary.begin();PointRunner != PointsOnBoundary.end(); PointRunner++) 2567 Log() << Verbose(0) << *(PointRunner->second) << endl; 2568 }; 2843 DoLog(0) && (Log() << Verbose(0) << "Printing all boundary points for debugging:" << endl); 2844 for (PointMap::const_iterator PointRunner = PointsOnBoundary.begin(); PointRunner != PointsOnBoundary.end(); PointRunner++) 2845 DoLog(0) && (Log() << Verbose(0) << *(PointRunner->second) << endl); 2846 } 2847 ; 2569 2848 2570 2849 void Tesselation::PrintAllBoundaryLines(ofstream *out) const 2571 2850 { 2572 Info FunctionInfo(__func__);2851 Info FunctionInfo(__func__); 2573 2852 // print all lines 2574 Log() << Verbose(0) << "Printing all boundary lines for debugging:" << endl;2853 DoLog(0) && (Log() << Verbose(0) << "Printing all boundary lines for debugging:" << endl); 2575 2854 for (LineMap::const_iterator LineRunner = LinesOnBoundary.begin(); LineRunner != LinesOnBoundary.end(); LineRunner++) 2576 Log() << Verbose(0) << *(LineRunner->second) << endl; 2577 }; 2855 DoLog(0) && (Log() << Verbose(0) << *(LineRunner->second) << endl); 2856 } 2857 ; 2578 2858 2579 2859 void Tesselation::PrintAllBoundaryTriangles(ofstream *out) const 2580 2860 { 2581 Info FunctionInfo(__func__);2861 Info FunctionInfo(__func__); 2582 2862 // print all triangles 2583 Log() << Verbose(0) << "Printing all boundary triangles for debugging:" << endl;2863 DoLog(0) && (Log() << Verbose(0) << "Printing all boundary triangles for debugging:" << endl); 2584 2864 for (TriangleMap::const_iterator TriangleRunner = TrianglesOnBoundary.begin(); TriangleRunner != TrianglesOnBoundary.end(); TriangleRunner++) 2585 Log() << Verbose(0) << *(TriangleRunner->second) << endl; 2586 }; 2865 DoLog(0) && (Log() << Verbose(0) << *(TriangleRunner->second) << endl); 2866 } 2867 ; 2587 2868 2588 2869 /** For a given boundary line \a *Base and its two triangles, picks the central baseline that is "higher". … … 2593 2874 double Tesselation::PickFarthestofTwoBaselines(class BoundaryLineSet *Base) 2594 2875 { 2595 Info FunctionInfo(__func__);2876 Info FunctionInfo(__func__); 2596 2877 class BoundaryLineSet *OtherBase; 2597 2878 Vector *ClosestPoint[2]; 2598 2879 double volume; 2599 2880 2600 int m =0;2601 for (TriangleMap::iterator runner = Base->triangles.begin(); runner != Base->triangles.end(); runner++)2602 for (int j =0;j<3;j++) // all of their endpoints and baselines2881 int m = 0; 2882 for (TriangleMap::iterator runner = Base->triangles.begin(); runner != Base->triangles.end(); runner++) 2883 for (int j = 0; j < 3; j++) // all of their endpoints and baselines 2603 2884 if (!Base->ContainsBoundaryPoint(runner->second->endpoints[j])) // and neither of its endpoints 2604 2885 BPS[m++] = runner->second->endpoints[j]; 2605 OtherBase = new class BoundaryLineSet(BPS, -1);2606 2607 Log() << Verbose(0) << "INFO: Current base line is " << *Base << "." << endl;2608 Log() << Verbose(0) << "INFO: Other base line is " << *OtherBase << "." << endl;2886 OtherBase = new class BoundaryLineSet(BPS, -1); 2887 2888 DoLog(0) && (Log() << Verbose(0) << "INFO: Current base line is " << *Base << "." << endl); 2889 DoLog(0) && (Log() << Verbose(0) << "INFO: Other base line is " << *OtherBase << "." << endl); 2609 2890 2610 2891 // get the closest point on each line to the other line … … 2613 2894 2614 2895 // get the distance vector from Base line to OtherBase line 2615 Vector Distance; 2616 Distance.CopyVector(ClosestPoint[1]); 2617 Distance.SubtractVector(ClosestPoint[0]); 2896 Vector Distance = (*ClosestPoint[1]) - (*ClosestPoint[0]); 2618 2897 2619 2898 // calculate volume … … 2621 2900 2622 2901 // delete the temporary other base line and the closest points 2623 delete (ClosestPoint[0]);2624 delete (ClosestPoint[1]);2625 delete (OtherBase);2902 delete (ClosestPoint[0]); 2903 delete (ClosestPoint[1]); 2904 delete (OtherBase); 2626 2905 2627 2906 if (Distance.NormSquared() < MYEPSILON) { // check for intersection 2628 Log() << Verbose(0) << "REJECT: Both lines have an intersection: Nothing to do." << endl;2907 DoLog(0) && (Log() << Verbose(0) << "REJECT: Both lines have an intersection: Nothing to do." << endl); 2629 2908 return false; 2630 2909 } else { // check for sign against BaseLineNormal … … 2632 2911 BaseLineNormal.Zero(); 2633 2912 if (Base->triangles.size() < 2) { 2634 eLog() << Verbose(1) << "Less than two triangles are attached to this baseline!" << endl;2913 DoeLog(1) && (eLog() << Verbose(1) << "Less than two triangles are attached to this baseline!" << endl); 2635 2914 return 0.; 2636 2915 } 2637 2916 for (TriangleMap::iterator runner = Base->triangles.begin(); runner != Base->triangles.end(); runner++) { 2638 Log() << Verbose(1) << "INFO: Adding NormalVector " << runner->second->NormalVector << " of triangle " << *(runner->second) << "." << endl;2639 BaseLineNormal .AddVector(&(runner->second->NormalVector));2640 } 2641 BaseLineNormal.Scale(1. /2.);2642 2643 if (Distance.ScalarProduct( &BaseLineNormal) > MYEPSILON) { // Distance points outwards, hence OtherBase higher than Base -> flip2644 Log() << Verbose(0) << "ACCEPT: Other base line would be higher: Flipping baseline." << endl;2917 DoLog(1) && (Log() << Verbose(1) << "INFO: Adding NormalVector " << runner->second->NormalVector << " of triangle " << *(runner->second) << "." << endl); 2918 BaseLineNormal += (runner->second->NormalVector); 2919 } 2920 BaseLineNormal.Scale(1. / 2.); 2921 2922 if (Distance.ScalarProduct(BaseLineNormal) > MYEPSILON) { // Distance points outwards, hence OtherBase higher than Base -> flip 2923 DoLog(0) && (Log() << Verbose(0) << "ACCEPT: Other base line would be higher: Flipping baseline." << endl); 2645 2924 // calculate volume summand as a general tetraeder 2646 2925 return volume; 2647 } else { // Base higher than OtherBase -> do nothing2648 Log() << Verbose(0) << "REJECT: Base line is higher: Nothing to do." << endl;2926 } else { // Base higher than OtherBase -> do nothing 2927 DoLog(0) && (Log() << Verbose(0) << "REJECT: Base line is higher: Nothing to do." << endl); 2649 2928 return 0.; 2650 2929 } 2651 2930 } 2652 }; 2931 } 2932 ; 2653 2933 2654 2934 /** For a given baseline and its two connected triangles, flips the baseline. … … 2661 2941 class BoundaryLineSet * Tesselation::FlipBaseline(class BoundaryLineSet *Base) 2662 2942 { 2663 Info FunctionInfo(__func__);2943 Info FunctionInfo(__func__); 2664 2944 class BoundaryLineSet *OldLines[4], *NewLine; 2665 2945 class BoundaryPointSet *OldPoints[2]; 2666 2946 Vector BaseLineNormal; 2667 2947 int OldTriangleNrs[2], OldBaseLineNr; 2668 int i, m;2948 int i, m; 2669 2949 2670 2950 // calculate NormalVector for later use 2671 2951 BaseLineNormal.Zero(); 2672 2952 if (Base->triangles.size() < 2) { 2673 eLog() << Verbose(1) << "Less than two triangles are attached to this baseline!" << endl;2953 DoeLog(1) && (eLog() << Verbose(1) << "Less than two triangles are attached to this baseline!" << endl); 2674 2954 return NULL; 2675 2955 } 2676 2956 for (TriangleMap::iterator runner = Base->triangles.begin(); runner != Base->triangles.end(); runner++) { 2677 Log() << Verbose(1) << "INFO: Adding NormalVector " << runner->second->NormalVector << " of triangle " << *(runner->second) << "." << endl;2678 BaseLineNormal .AddVector(&(runner->second->NormalVector));2679 } 2680 BaseLineNormal.Scale(-1. /2.); // has to point inside for BoundaryTriangleSet::GetNormalVector()2957 DoLog(1) && (Log() << Verbose(1) << "INFO: Adding NormalVector " << runner->second->NormalVector << " of triangle " << *(runner->second) << "." << endl); 2958 BaseLineNormal += (runner->second->NormalVector); 2959 } 2960 BaseLineNormal.Scale(-1. / 2.); // has to point inside for BoundaryTriangleSet::GetNormalVector() 2681 2961 2682 2962 // get the two triangles 2683 2963 // gather four endpoints and four lines 2684 for (int j =0;j<4;j++)2964 for (int j = 0; j < 4; j++) 2685 2965 OldLines[j] = NULL; 2686 for (int j =0;j<2;j++)2966 for (int j = 0; j < 2; j++) 2687 2967 OldPoints[j] = NULL; 2688 i =0;2689 m =0;2690 Log() << Verbose(0) << "The four old lines are: ";2691 for (TriangleMap::iterator runner = Base->triangles.begin(); runner != Base->triangles.end(); runner++)2692 for (int j =0;j<3;j++) // all of their endpoints and baselines2968 i = 0; 2969 m = 0; 2970 DoLog(0) && (Log() << Verbose(0) << "The four old lines are: "); 2971 for (TriangleMap::iterator runner = Base->triangles.begin(); runner != Base->triangles.end(); runner++) 2972 for (int j = 0; j < 3; j++) // all of their endpoints and baselines 2693 2973 if (runner->second->lines[j] != Base) { // pick not the central baseline 2694 2974 OldLines[i++] = runner->second->lines[j]; 2695 Log() << Verbose(0) << *runner->second->lines[j] << "\t";2975 DoLog(0) && (Log() << Verbose(0) << *runner->second->lines[j] << "\t"); 2696 2976 } 2697 Log() << Verbose(0) << endl;2698 Log() << Verbose(0) << "The two old points are: ";2699 for (TriangleMap::iterator runner = Base->triangles.begin(); runner != Base->triangles.end(); runner++)2700 for (int j =0;j<3;j++) // all of their endpoints and baselines2977 DoLog(0) && (Log() << Verbose(0) << endl); 2978 DoLog(0) && (Log() << Verbose(0) << "The two old points are: "); 2979 for (TriangleMap::iterator runner = Base->triangles.begin(); runner != Base->triangles.end(); runner++) 2980 for (int j = 0; j < 3; j++) // all of their endpoints and baselines 2701 2981 if (!Base->ContainsBoundaryPoint(runner->second->endpoints[j])) { // and neither of its endpoints 2702 2982 OldPoints[m++] = runner->second->endpoints[j]; 2703 Log() << Verbose(0) << *runner->second->endpoints[j] << "\t";2983 DoLog(0) && (Log() << Verbose(0) << *runner->second->endpoints[j] << "\t"); 2704 2984 } 2705 Log() << Verbose(0) << endl;2985 DoLog(0) && (Log() << Verbose(0) << endl); 2706 2986 2707 2987 // check whether everything is in place to create new lines and triangles 2708 if (i <4) {2709 eLog() << Verbose(1) << "We have not gathered enough baselines!" << endl;2988 if (i < 4) { 2989 DoeLog(1) && (eLog() << Verbose(1) << "We have not gathered enough baselines!" << endl); 2710 2990 return NULL; 2711 2991 } 2712 for (int j =0;j<4;j++)2992 for (int j = 0; j < 4; j++) 2713 2993 if (OldLines[j] == NULL) { 2714 eLog() << Verbose(1) << "We have not gathered enough baselines!" << endl;2994 DoeLog(1) && (eLog() << Verbose(1) << "We have not gathered enough baselines!" << endl); 2715 2995 return NULL; 2716 2996 } 2717 for (int j =0;j<2;j++)2997 for (int j = 0; j < 2; j++) 2718 2998 if (OldPoints[j] == NULL) { 2719 eLog() << Verbose(1) << "We have not gathered enough endpoints!" << endl;2999 DoeLog(1) && (eLog() << Verbose(1) << "We have not gathered enough endpoints!" << endl); 2720 3000 return NULL; 2721 3001 } 2722 3002 2723 3003 // remove triangles and baseline removes itself 2724 Log() << Verbose(0) << "INFO: Deleting baseline " << *Base << " from global list." << endl;3004 DoLog(0) && (Log() << Verbose(0) << "INFO: Deleting baseline " << *Base << " from global list." << endl); 2725 3005 OldBaseLineNr = Base->Nr; 2726 m =0;2727 for (TriangleMap::iterator runner = Base->triangles.begin(); runner != Base->triangles.end(); runner++) {2728 Log() << Verbose(0) << "INFO: Deleting triangle " << *(runner->second) << "." << endl;3006 m = 0; 3007 for (TriangleMap::iterator runner = Base->triangles.begin(); runner != Base->triangles.end(); runner++) { 3008 DoLog(0) && (Log() << Verbose(0) << "INFO: Deleting triangle " << *(runner->second) << "." << endl); 2729 3009 OldTriangleNrs[m++] = runner->second->Nr; 2730 3010 RemoveTesselationTriangle(runner->second); … … 2736 3016 NewLine = new class BoundaryLineSet(BPS, OldBaseLineNr); 2737 3017 LinesOnBoundary.insert(LinePair(OldBaseLineNr, NewLine)); // no need for check for unique insertion as NewLine is definitely a new one 2738 Log() << Verbose(0) << "INFO: Created new baseline " << *NewLine << "." << endl;3018 DoLog(0) && (Log() << Verbose(0) << "INFO: Created new baseline " << *NewLine << "." << endl); 2739 3019 2740 3020 // construct new triangles with flipped baseline 2741 i =-1;3021 i = -1; 2742 3022 if (OldLines[0]->IsConnectedTo(OldLines[2])) 2743 i =2;3023 i = 2; 2744 3024 if (OldLines[0]->IsConnectedTo(OldLines[3])) 2745 i =3;2746 if (i !=-1) {3025 i = 3; 3026 if (i != -1) { 2747 3027 BLS[0] = OldLines[0]; 2748 3028 BLS[1] = OldLines[i]; … … 2751 3031 BTS->GetNormalVector(BaseLineNormal); 2752 3032 AddTesselationTriangle(OldTriangleNrs[0]); 2753 Log() << Verbose(0) << "INFO: Created new triangle " << *BTS << "." << endl;2754 2755 BLS[0] = (i ==2 ? OldLines[3] : OldLines[2]);3033 DoLog(0) && (Log() << Verbose(0) << "INFO: Created new triangle " << *BTS << "." << endl); 3034 3035 BLS[0] = (i == 2 ? OldLines[3] : OldLines[2]); 2756 3036 BLS[1] = OldLines[1]; 2757 3037 BLS[2] = NewLine; … … 2759 3039 BTS->GetNormalVector(BaseLineNormal); 2760 3040 AddTesselationTriangle(OldTriangleNrs[1]); 2761 Log() << Verbose(0) << "INFO: Created new triangle " << *BTS << "." << endl;3041 DoLog(0) && (Log() << Verbose(0) << "INFO: Created new triangle " << *BTS << "." << endl); 2762 3042 } else { 2763 eLog() << Verbose(0) << "The four old lines do not connect, something's utterly wrong here!" << endl;3043 DoeLog(0) && (eLog() << Verbose(0) << "The four old lines do not connect, something's utterly wrong here!" << endl); 2764 3044 return NULL; 2765 3045 } 2766 3046 2767 3047 return NewLine; 2768 } ;2769 3048 } 3049 ; 2770 3050 2771 3051 /** Finds the second point of starting triangle. … … 2779 3059 void Tesselation::FindSecondPointForTesselation(TesselPoint* a, Vector Oben, TesselPoint*& OptCandidate, double Storage[3], double RADIUS, const LinkedCell *LC) 2780 3060 { 2781 Info FunctionInfo(__func__);3061 Info FunctionInfo(__func__); 2782 3062 Vector AngleCheck; 2783 3063 class TesselPoint* Candidate = NULL; … … 2788 3068 int Nupper[NDIM]; 2789 3069 2790 if (LC->SetIndexToNode(a)) { // get cell for the starting point2791 for (int i=0;i<NDIM;i++) // store indices of this cell3070 if (LC->SetIndexToNode(a)) { // get cell for the starting point 3071 for (int i = 0; i < NDIM; i++) // store indices of this cell 2792 3072 N[i] = LC->n[i]; 2793 3073 } else { 2794 eLog() << Verbose(1) << "Point " << *a << " is not found in cell " << LC->index << "." << endl;3074 DoeLog(1) && (eLog() << Verbose(1) << "Point " << *a << " is not found in cell " << LC->index << "." << endl); 2795 3075 return; 2796 3076 } 2797 3077 // then go through the current and all neighbouring cells and check the contained points for possible candidates 2798 for (int i=0;i<NDIM;i++) { 2799 Nlower[i] = ((N[i]-1) >= 0) ? N[i]-1 : 0; 2800 Nupper[i] = ((N[i]+1) < LC->N[i]) ? N[i]+1 : LC->N[i]-1; 2801 } 2802 Log() << Verbose(0) << "LC Intervals from [" << N[0] << "<->" << LC->N[0] << ", " << N[1] << "<->" << LC->N[1] << ", " << N[2] << "<->" << LC->N[2] << "] :" 2803 << " [" << Nlower[0] << "," << Nupper[0] << "], " << " [" << Nlower[1] << "," << Nupper[1] << "], " << " [" << Nlower[2] << "," << Nupper[2] << "], " << endl; 3078 for (int i = 0; i < NDIM; i++) { 3079 Nlower[i] = ((N[i] - 1) >= 0) ? N[i] - 1 : 0; 3080 Nupper[i] = ((N[i] + 1) < LC->N[i]) ? N[i] + 1 : LC->N[i] - 1; 3081 } 3082 DoLog(0) && (Log() << Verbose(0) << "LC Intervals from [" << N[0] << "<->" << LC->N[0] << ", " << N[1] << "<->" << LC->N[1] << ", " << N[2] << "<->" << LC->N[2] << "] :" << " [" << Nlower[0] << "," << Nupper[0] << "], " << " [" << Nlower[1] << "," << Nupper[1] << "], " << " [" << Nlower[2] << "," << Nupper[2] << "], " << endl); 2804 3083 2805 3084 for (LC->n[0] = Nlower[0]; LC->n[0] <= Nupper[0]; LC->n[0]++) 2806 3085 for (LC->n[1] = Nlower[1]; LC->n[1] <= Nupper[1]; LC->n[1]++) 2807 3086 for (LC->n[2] = Nlower[2]; LC->n[2] <= Nupper[2]; LC->n[2]++) { 2808 const Linked Nodes *List = LC->GetCurrentCell();3087 const LinkedCell::LinkedNodes *List = LC->GetCurrentCell(); 2809 3088 //Log() << Verbose(1) << "Current cell is " << LC->n[0] << ", " << LC->n[1] << ", " << LC->n[2] << " with No. " << LC->index << "." << endl; 2810 3089 if (List != NULL) { 2811 for (Linked Nodes::const_iterator Runner = List->begin(); Runner != List->end(); Runner++) {3090 for (LinkedCell::LinkedNodes::const_iterator Runner = List->begin(); Runner != List->end(); Runner++) { 2812 3091 Candidate = (*Runner); 2813 3092 // check if we only have one unique point yet ... … … 2817 3096 double distance, scaleFactor; 2818 3097 2819 OrthogonalizedOben.CopyVector(&Oben); 2820 aCandidate.CopyVector(a->node); 2821 aCandidate.SubtractVector(Candidate->node); 2822 OrthogonalizedOben.ProjectOntoPlane(&aCandidate); 3098 OrthogonalizedOben = Oben; 3099 aCandidate = (*a->node) - (*Candidate->node); 3100 OrthogonalizedOben.ProjectOntoPlane(aCandidate); 2823 3101 OrthogonalizedOben.Normalize(); 2824 3102 distance = 0.5 * aCandidate.Norm(); … … 2826 3104 OrthogonalizedOben.Scale(scaleFactor); 2827 3105 2828 Center.CopyVector(Candidate->node); 2829 Center.AddVector(a->node); 2830 Center.Scale(0.5); 2831 Center.AddVector(&OrthogonalizedOben); 2832 2833 AngleCheck.CopyVector(&Center); 2834 AngleCheck.SubtractVector(a->node); 3106 Center = 0.5 * ((*Candidate->node) + (*a->node)); 3107 Center += OrthogonalizedOben; 3108 3109 AngleCheck = Center - (*a->node); 2835 3110 norm = aCandidate.Norm(); 2836 3111 // second point shall have smallest angle with respect to Oben vector 2837 if (norm < RADIUS *2.) {2838 angle = AngleCheck.Angle( &Oben);3112 if (norm < RADIUS * 2.) { 3113 angle = AngleCheck.Angle(Oben); 2839 3114 if (angle < Storage[0]) { 2840 3115 //Log() << Verbose(1) << "Old values of Storage: %lf %lf \n", Storage[0], Storage[1]); 2841 Log() << Verbose(1) << "Current candidate is " << *Candidate << ": Is a better candidate with distance " << norm << " and angle " << angle << " to oben " << Oben << ".\n";3116 DoLog(1) && (Log() << Verbose(1) << "Current candidate is " << *Candidate << ": Is a better candidate with distance " << norm << " and angle " << angle << " to oben " << Oben << ".\n"); 2842 3117 OptCandidate = Candidate; 2843 3118 Storage[0] = angle; … … 2854 3129 } 2855 3130 } else { 2856 Log() << Verbose(0) << "Linked cell list is empty." << endl;3131 DoLog(0) && (Log() << Verbose(0) << "Linked cell list is empty." << endl); 2857 3132 } 2858 3133 } 2859 } ;2860 3134 } 3135 ; 2861 3136 2862 3137 /** This recursive function finds a third point, to form a triangle with two given ones. … … 2886 3161 * @param OldSphereCenter center of sphere for base triangle, relative to center of BaseLine, giving null angle for the parameter circle 2887 3162 * @param CandidateLine CandidateForTesselation with the current base line and list of candidates and ShortestAngle 2888 * @param Third Nodethird point to avoid in search3163 * @param ThirdPoint third point to avoid in search 2889 3164 * @param RADIUS radius of sphere 2890 3165 * @param *LC LinkedCell structure with neighbouring points 2891 3166 */ 2892 void Tesselation::FindThirdPointForTesselation( Vector &NormalVector, Vector &SearchDirection, Vector &OldSphereCenter, CandidateForTesselation &CandidateLine, const class TesselPoint * const ThirdNode, const double RADIUS, const LinkedCell *LC) const2893 { 2894 Info FunctionInfo(__func__);2895 Vector CircleCenter; // center of the circle, i.e. of the band of sphere's centers3167 void Tesselation::FindThirdPointForTesselation(const Vector &NormalVector, const Vector &SearchDirection, const Vector &OldSphereCenter, CandidateForTesselation &CandidateLine, const class BoundaryPointSet * const ThirdPoint, const double RADIUS, const LinkedCell *LC) const 3168 { 3169 Info FunctionInfo(__func__); 3170 Vector CircleCenter; // center of the circle, i.e. of the band of sphere's centers 2896 3171 Vector CirclePlaneNormal; // normal vector defining the plane this circle lives in 2897 3172 Vector SphereCenter; 2898 Vector NewSphereCenter; // center of the sphere defined by the two points of BaseLine and the one of Candidate, first possibility2899 Vector OtherNewSphereCenter; // center of the sphere defined by the two points of BaseLine and the one of Candidate, second possibility2900 Vector NewNormalVector; // normal vector of the Candidate's triangle3173 Vector NewSphereCenter; // center of the sphere defined by the two points of BaseLine and the one of Candidate, first possibility 3174 Vector OtherNewSphereCenter; // center of the sphere defined by the two points of BaseLine and the one of Candidate, second possibility 3175 Vector NewNormalVector; // normal vector of the Candidate's triangle 2901 3176 Vector helper, OptCandidateCenter, OtherOptCandidateCenter; 2902 3177 Vector RelativeOldSphereCenter; … … 2909 3184 TesselPoint *Candidate = NULL; 2910 3185 2911 Log() << Verbose(1) << "INFO: NormalVector of BaseTriangle is " << NormalVector << "." << endl; 3186 DoLog(1) && (Log() << Verbose(1) << "INFO: NormalVector of BaseTriangle is " << NormalVector << "." << endl); 3187 3188 // copy old center 3189 CandidateLine.OldCenter = OldSphereCenter; 3190 CandidateLine.ThirdPoint = ThirdPoint; 3191 CandidateLine.pointlist.clear(); 2912 3192 2913 3193 // construct center of circle 2914 CircleCenter.CopyVector(CandidateLine.BaseLine->endpoints[0]->node->node); 2915 CircleCenter.AddVector(CandidateLine.BaseLine->endpoints[1]->node->node); 2916 CircleCenter.Scale(0.5); 3194 CircleCenter = 0.5 * ((*CandidateLine.BaseLine->endpoints[0]->node->node) + 3195 (*CandidateLine.BaseLine->endpoints[1]->node->node)); 2917 3196 2918 3197 // construct normal vector of circle 2919 CirclePlaneNormal.CopyVector(CandidateLine.BaseLine->endpoints[0]->node->node); 2920 CirclePlaneNormal.SubtractVector(CandidateLine.BaseLine->endpoints[1]->node->node); 2921 2922 RelativeOldSphereCenter.CopyVector(&OldSphereCenter); 2923 RelativeOldSphereCenter.SubtractVector(&CircleCenter); 2924 2925 // calculate squared radius TesselPoint *ThirdNode,f circle 2926 radius = CirclePlaneNormal.NormSquared()/4.; 2927 if (radius < RADIUS*RADIUS) { 2928 CircleRadius = RADIUS*RADIUS - radius; 3198 CirclePlaneNormal = (*CandidateLine.BaseLine->endpoints[0]->node->node) - 3199 (*CandidateLine.BaseLine->endpoints[1]->node->node); 3200 3201 RelativeOldSphereCenter = OldSphereCenter - CircleCenter; 3202 3203 // calculate squared radius TesselPoint *ThirdPoint,f circle 3204 radius = CirclePlaneNormal.NormSquared() / 4.; 3205 if (radius < RADIUS * RADIUS) { 3206 CircleRadius = RADIUS * RADIUS - radius; 2929 3207 CirclePlaneNormal.Normalize(); 2930 Log() << Verbose(1) << "INFO: CircleCenter is at " << CircleCenter << ", CirclePlaneNormal is " << CirclePlaneNormal << " with circle radius " << sqrt(CircleRadius) << "." << endl;3208 DoLog(1) && (Log() << Verbose(1) << "INFO: CircleCenter is at " << CircleCenter << ", CirclePlaneNormal is " << CirclePlaneNormal << " with circle radius " << sqrt(CircleRadius) << "." << endl); 2931 3209 2932 3210 // test whether old center is on the band's plane 2933 if (fabs(RelativeOldSphereCenter.ScalarProduct( &CirclePlaneNormal)) > HULLEPSILON) {2934 eLog() << Verbose(1) << "Something's very wrong here: RelativeOldSphereCenter is not on the band's plane as desired by " << fabs(RelativeOldSphereCenter.ScalarProduct(&CirclePlaneNormal)) << "!" << endl;2935 RelativeOldSphereCenter.ProjectOntoPlane( &CirclePlaneNormal);3211 if (fabs(RelativeOldSphereCenter.ScalarProduct(CirclePlaneNormal)) > HULLEPSILON) { 3212 DoeLog(1) && (eLog() << Verbose(1) << "Something's very wrong here: RelativeOldSphereCenter is not on the band's plane as desired by " << fabs(RelativeOldSphereCenter.ScalarProduct(CirclePlaneNormal)) << "!" << endl); 3213 RelativeOldSphereCenter.ProjectOntoPlane(CirclePlaneNormal); 2936 3214 } 2937 3215 radius = RelativeOldSphereCenter.NormSquared(); 2938 3216 if (fabs(radius - CircleRadius) < HULLEPSILON) { 2939 Log() << Verbose(1) << "INFO: RelativeOldSphereCenter is at " << RelativeOldSphereCenter << "." << endl;3217 DoLog(1) && (Log() << Verbose(1) << "INFO: RelativeOldSphereCenter is at " << RelativeOldSphereCenter << "." << endl); 2940 3218 2941 3219 // check SearchDirection 2942 Log() << Verbose(1) << "INFO: SearchDirection is " << SearchDirection << "." << endl;2943 if (fabs(RelativeOldSphereCenter.ScalarProduct( &SearchDirection)) > HULLEPSILON) {// rotated the wrong way!2944 eLog() << Verbose(1) << "SearchDirection and RelativeOldSphereCenter are not orthogonal!" << endl;3220 DoLog(1) && (Log() << Verbose(1) << "INFO: SearchDirection is " << SearchDirection << "." << endl); 3221 if (fabs(RelativeOldSphereCenter.ScalarProduct(SearchDirection)) > HULLEPSILON) { // rotated the wrong way! 3222 DoeLog(1) && (eLog() << Verbose(1) << "SearchDirection and RelativeOldSphereCenter are not orthogonal!" << endl); 2945 3223 } 2946 3224 2947 3225 // get cell for the starting point 2948 3226 if (LC->SetIndexToVector(&CircleCenter)) { 2949 for (int i=0;i<NDIM;i++) // store indices of this cell2950 N[i] = LC->n[i];3227 for (int i = 0; i < NDIM; i++) // store indices of this cell 3228 N[i] = LC->n[i]; 2951 3229 //Log() << Verbose(1) << "INFO: Center cell is " << N[0] << ", " << N[1] << ", " << N[2] << " with No. " << LC->index << "." << endl; 2952 3230 } else { 2953 eLog() << Verbose(1) << "Vector " << CircleCenter << " is outside of LinkedCell's bounding box." << endl;3231 DoeLog(1) && (eLog() << Verbose(1) << "Vector " << CircleCenter << " is outside of LinkedCell's bounding box." << endl); 2954 3232 return; 2955 3233 } 2956 3234 // then go through the current and all neighbouring cells and check the contained points for possible candidates 2957 3235 //Log() << Verbose(1) << "LC Intervals:"; 2958 for (int i =0;i<NDIM;i++) {2959 Nlower[i] = ((N[i] -1) >= 0) ? N[i]-1 : 0;2960 Nupper[i] = ((N[i] +1) < LC->N[i]) ? N[i]+1 : LC->N[i]-1;3236 for (int i = 0; i < NDIM; i++) { 3237 Nlower[i] = ((N[i] - 1) >= 0) ? N[i] - 1 : 0; 3238 Nupper[i] = ((N[i] + 1) < LC->N[i]) ? N[i] + 1 : LC->N[i] - 1; 2961 3239 //Log() << Verbose(0) << " [" << Nlower[i] << "," << Nupper[i] << "] "; 2962 3240 } … … 2965 3243 for (LC->n[1] = Nlower[1]; LC->n[1] <= Nupper[1]; LC->n[1]++) 2966 3244 for (LC->n[2] = Nlower[2]; LC->n[2] <= Nupper[2]; LC->n[2]++) { 2967 const Linked Nodes *List = LC->GetCurrentCell();3245 const LinkedCell::LinkedNodes *List = LC->GetCurrentCell(); 2968 3246 //Log() << Verbose(1) << "Current cell is " << LC->n[0] << ", " << LC->n[1] << ", " << LC->n[2] << " with No. " << LC->index << "." << endl; 2969 3247 if (List != NULL) { 2970 for (Linked Nodes::const_iterator Runner = List->begin(); Runner != List->end(); Runner++) {3248 for (LinkedCell::LinkedNodes::const_iterator Runner = List->begin(); Runner != List->end(); Runner++) { 2971 3249 Candidate = (*Runner); 2972 3250 2973 3251 // check for three unique points 2974 Log() << Verbose(2) << "INFO: Current Candidate is " << *Candidate << " for BaseLine " << *CandidateLine.BaseLine << " with OldSphereCenter " << OldSphereCenter << "." << endl;2975 if ((Candidate != CandidateLine.BaseLine->endpoints[0]->node) && (Candidate != CandidateLine.BaseLine->endpoints[1]->node) ){3252 DoLog(2) && (Log() << Verbose(2) << "INFO: Current Candidate is " << *Candidate << " for BaseLine " << *CandidateLine.BaseLine << " with OldSphereCenter " << OldSphereCenter << "." << endl); 3253 if ((Candidate != CandidateLine.BaseLine->endpoints[0]->node) && (Candidate != CandidateLine.BaseLine->endpoints[1]->node)) { 2976 3254 2977 3255 // find center on the plane 2978 3256 GetCenterofCircumcircle(&NewPlaneCenter, *CandidateLine.BaseLine->endpoints[0]->node->node, *CandidateLine.BaseLine->endpoints[1]->node->node, *Candidate->node); 2979 Log() << Verbose(1) << "INFO: NewPlaneCenter is " << NewPlaneCenter << "." << endl; 2980 2981 if (NewNormalVector.MakeNormalVector(CandidateLine.BaseLine->endpoints[0]->node->node, CandidateLine.BaseLine->endpoints[1]->node->node, Candidate->node) 2982 && (fabs(NewNormalVector.NormSquared()) > HULLEPSILON) 2983 ) { 2984 Log() << Verbose(1) << "INFO: NewNormalVector is " << NewNormalVector << "." << endl; 2985 radius = CandidateLine.BaseLine->endpoints[0]->node->node->DistanceSquared(&NewPlaneCenter); 2986 Log() << Verbose(1) << "INFO: CircleCenter is at " << CircleCenter << ", CirclePlaneNormal is " << CirclePlaneNormal << " with circle radius " << sqrt(CircleRadius) << "." << endl; 2987 Log() << Verbose(1) << "INFO: SearchDirection is " << SearchDirection << "." << endl; 2988 Log() << Verbose(1) << "INFO: Radius of CircumCenterCircle is " << radius << "." << endl; 2989 if (radius < RADIUS*RADIUS) { 2990 otherradius = CandidateLine.BaseLine->endpoints[1]->node->node->DistanceSquared(&NewPlaneCenter); 2991 if (fabs(radius - otherradius) > HULLEPSILON) { 2992 eLog() << Verbose(1) << "Distance to center of circumcircle is not the same from each corner of the triangle: " << fabs(radius-otherradius) << endl; 2993 } 2994 // construct both new centers 2995 NewSphereCenter.CopyVector(&NewPlaneCenter); 2996 OtherNewSphereCenter.CopyVector(&NewPlaneCenter); 2997 helper.CopyVector(&NewNormalVector); 2998 helper.Scale(sqrt(RADIUS*RADIUS - radius)); 2999 Log() << Verbose(2) << "INFO: Distance of NewPlaneCenter " << NewPlaneCenter << " to either NewSphereCenter is " << helper.Norm() << " of vector " << helper << " with sphere radius " << RADIUS << "." << endl; 3000 NewSphereCenter.AddVector(&helper); 3001 Log() << Verbose(2) << "INFO: NewSphereCenter is at " << NewSphereCenter << "." << endl; 3002 // OtherNewSphereCenter is created by the same vector just in the other direction 3003 helper.Scale(-1.); 3004 OtherNewSphereCenter.AddVector(&helper); 3005 Log() << Verbose(2) << "INFO: OtherNewSphereCenter is at " << OtherNewSphereCenter << "." << endl; 3006 3007 alpha = GetPathLengthonCircumCircle(CircleCenter, CirclePlaneNormal, CircleRadius, NewSphereCenter, OldSphereCenter, NormalVector, SearchDirection); 3008 Otheralpha = GetPathLengthonCircumCircle(CircleCenter, CirclePlaneNormal, CircleRadius, OtherNewSphereCenter, OldSphereCenter, NormalVector, SearchDirection); 3009 alpha = min(alpha, Otheralpha); 3010 3011 // if there is a better candidate, drop the current list and add the new candidate 3012 // otherwise ignore the new candidate and keep the list 3013 if (CandidateLine.ShortestAngle > (alpha - HULLEPSILON)) { 3014 if (fabs(alpha - Otheralpha) > MYEPSILON) { 3015 CandidateLine.OptCenter.CopyVector(&NewSphereCenter); 3016 CandidateLine.OtherOptCenter.CopyVector(&OtherNewSphereCenter); 3257 DoLog(1) && (Log() << Verbose(1) << "INFO: NewPlaneCenter is " << NewPlaneCenter << "." << endl); 3258 3259 try { 3260 NewNormalVector = Plane(*(CandidateLine.BaseLine->endpoints[0]->node->node), 3261 *(CandidateLine.BaseLine->endpoints[1]->node->node), 3262 *(Candidate->node)).getNormal(); 3263 DoLog(1) && (Log() << Verbose(1) << "INFO: NewNormalVector is " << NewNormalVector << "." << endl); 3264 radius = CandidateLine.BaseLine->endpoints[0]->node->node->DistanceSquared(NewPlaneCenter); 3265 DoLog(1) && (Log() << Verbose(1) << "INFO: CircleCenter is at " << CircleCenter << ", CirclePlaneNormal is " << CirclePlaneNormal << " with circle radius " << sqrt(CircleRadius) << "." << endl); 3266 DoLog(1) && (Log() << Verbose(1) << "INFO: SearchDirection is " << SearchDirection << "." << endl); 3267 DoLog(1) && (Log() << Verbose(1) << "INFO: Radius of CircumCenterCircle is " << radius << "." << endl); 3268 if (radius < RADIUS * RADIUS) { 3269 otherradius = CandidateLine.BaseLine->endpoints[1]->node->node->DistanceSquared(NewPlaneCenter); 3270 if (fabs(radius - otherradius) < HULLEPSILON) { 3271 // construct both new centers 3272 NewSphereCenter = NewPlaneCenter; 3273 OtherNewSphereCenter= NewPlaneCenter; 3274 helper = NewNormalVector; 3275 helper.Scale(sqrt(RADIUS * RADIUS - radius)); 3276 DoLog(2) && (Log() << Verbose(2) << "INFO: Distance of NewPlaneCenter " << NewPlaneCenter << " to either NewSphereCenter is " << helper.Norm() << " of vector " << helper << " with sphere radius " << RADIUS << "." << endl); 3277 NewSphereCenter += helper; 3278 DoLog(2) && (Log() << Verbose(2) << "INFO: NewSphereCenter is at " << NewSphereCenter << "." << endl); 3279 // OtherNewSphereCenter is created by the same vector just in the other direction 3280 helper.Scale(-1.); 3281 OtherNewSphereCenter += helper; 3282 DoLog(2) && (Log() << Verbose(2) << "INFO: OtherNewSphereCenter is at " << OtherNewSphereCenter << "." << endl); 3283 alpha = GetPathLengthonCircumCircle(CircleCenter, CirclePlaneNormal, CircleRadius, NewSphereCenter, OldSphereCenter, NormalVector, SearchDirection); 3284 Otheralpha = GetPathLengthonCircumCircle(CircleCenter, CirclePlaneNormal, CircleRadius, OtherNewSphereCenter, OldSphereCenter, NormalVector, SearchDirection); 3285 if ((ThirdPoint != NULL) && (Candidate == ThirdPoint->node)) { // in that case only the other circlecenter is valid 3286 if (OldSphereCenter.DistanceSquared(NewSphereCenter) < OldSphereCenter.DistanceSquared(OtherNewSphereCenter)) 3287 alpha = Otheralpha; 3288 } else 3289 alpha = min(alpha, Otheralpha); 3290 // if there is a better candidate, drop the current list and add the new candidate 3291 // otherwise ignore the new candidate and keep the list 3292 if (CandidateLine.ShortestAngle > (alpha - HULLEPSILON)) { 3293 if (fabs(alpha - Otheralpha) > MYEPSILON) { 3294 CandidateLine.OptCenter = NewSphereCenter; 3295 CandidateLine.OtherOptCenter = OtherNewSphereCenter; 3296 } else { 3297 CandidateLine.OptCenter = OtherNewSphereCenter; 3298 CandidateLine.OtherOptCenter = NewSphereCenter; 3299 } 3300 // if there is an equal candidate, add it to the list without clearing the list 3301 if ((CandidateLine.ShortestAngle - HULLEPSILON) < alpha) { 3302 CandidateLine.pointlist.push_back(Candidate); 3303 DoLog(0) && (Log() << Verbose(0) << "ACCEPT: We have found an equally good candidate: " << *(Candidate) << " with " << alpha << " and circumsphere's center at " << CandidateLine.OptCenter << "." << endl); 3304 } else { 3305 // remove all candidates from the list and then the list itself 3306 CandidateLine.pointlist.clear(); 3307 CandidateLine.pointlist.push_back(Candidate); 3308 DoLog(0) && (Log() << Verbose(0) << "ACCEPT: We have found a better candidate: " << *(Candidate) << " with " << alpha << " and circumsphere's center at " << CandidateLine.OptCenter << "." << endl); 3309 } 3310 CandidateLine.ShortestAngle = alpha; 3311 DoLog(0) && (Log() << Verbose(0) << "INFO: There are " << CandidateLine.pointlist.size() << " candidates in the list now." << endl); 3017 3312 } else { 3018 CandidateLine.OptCenter.CopyVector(&OtherNewSphereCenter); 3019 CandidateLine.OtherOptCenter.CopyVector(&NewSphereCenter); 3313 if ((Candidate != NULL) && (CandidateLine.pointlist.begin() != CandidateLine.pointlist.end())) { 3314 DoLog(1) && (Log() << Verbose(1) << "REJECT: Old candidate " << *(*CandidateLine.pointlist.begin()) << " with " << CandidateLine.ShortestAngle << " is better than new one " << *Candidate << " with " << alpha << " ." << endl); 3315 } else { 3316 DoLog(1) && (Log() << Verbose(1) << "REJECT: Candidate " << *Candidate << " with " << alpha << " was rejected." << endl); 3317 } 3020 3318 } 3021 // if there is an equal candidate, add it to the list without clearing the list3022 if ((CandidateLine.ShortestAngle - HULLEPSILON) < alpha) {3023 CandidateLine.pointlist.push_back(Candidate);3024 Log() << Verbose(0) << "ACCEPT: We have found an equally good candidate: " << *(Candidate) << " with "3025 << alpha << " and circumsphere's center at " << CandidateLine.OptCenter << "." << endl;3026 } else {3027 // remove all candidates from the list and then the list itself3028 CandidateLine.pointlist.clear();3029 CandidateLine.pointlist.push_back(Candidate);3030 Log() << Verbose(0) << "ACCEPT: We have found a better candidate: " << *(Candidate) << " with "3031 << alpha << " and circumsphere's center at " << CandidateLine.OptCenter << "." << endl;3032 }3033 CandidateLine.ShortestAngle = alpha;3034 Log() << Verbose(0) << "INFO: There are " << CandidateLine.pointlist.size() << " candidates in the list now." << endl;3035 3319 } else { 3036 if ((Candidate != NULL) && (CandidateLine.pointlist.begin() != CandidateLine.pointlist.end())) { 3037 Log() << Verbose(1) << "REJECT: Old candidate " << *(Candidate) << " with " << CandidateLine.ShortestAngle << " is better than new one " << *Candidate << " with " << alpha << " ." << endl; 3038 } else { 3039 Log() << Verbose(1) << "REJECT: Candidate " << *Candidate << " with " << alpha << " was rejected." << endl; 3040 } 3320 DoLog(1) && (Log() << Verbose(1) << "REJECT: Distance to center of circumcircle is not the same from each corner of the triangle: " << fabs(radius - otherradius) << endl); 3041 3321 } 3042 3322 } else { 3043 Log() << Verbose(1) << "REJECT: NewSphereCenter " << NewSphereCenter << " for " << *Candidate << " is too far away: " << radius << "." << endl;3323 DoLog(1) && (Log() << Verbose(1) << "REJECT: NewSphereCenter " << NewSphereCenter << " for " << *Candidate << " is too far away: " << radius << "." << endl); 3044 3324 } 3045 } else { 3325 } 3326 catch (LinearDependenceException &excp){ 3327 Log() << Verbose(1) << excp; 3046 3328 Log() << Verbose(1) << "REJECT: Three points from " << *CandidateLine.BaseLine << " and Candidate " << *Candidate << " are linear-dependent." << endl; 3047 3329 } 3048 3330 } else { 3049 if (Third Node!= NULL) {3050 Log() << Verbose(1) << "REJECT: Base triangle " << *CandidateLine.BaseLine << " and " << *ThirdNode << " contains Candidate " << *Candidate << "." << endl;3331 if (ThirdPoint != NULL) { 3332 DoLog(1) && (Log() << Verbose(1) << "REJECT: Base triangle " << *CandidateLine.BaseLine << " and " << *ThirdPoint << " contains Candidate " << *Candidate << "." << endl); 3051 3333 } else { 3052 Log() << Verbose(1) << "REJECT: Base triangle " << *CandidateLine.BaseLine << " contains Candidate " << *Candidate << "." << endl;3334 DoLog(1) && (Log() << Verbose(1) << "REJECT: Base triangle " << *CandidateLine.BaseLine << " contains Candidate " << *Candidate << "." << endl); 3053 3335 } 3054 3336 } … … 3057 3339 } 3058 3340 } else { 3059 eLog() << Verbose(1) << "The projected center of the old sphere has radius " << radius << " instead of " << CircleRadius << "." << endl;3341 DoeLog(1) && (eLog() << Verbose(1) << "The projected center of the old sphere has radius " << radius << " instead of " << CircleRadius << "." << endl); 3060 3342 } 3061 3343 } else { 3062 if (Third Node!= NULL)3063 Log() << Verbose(1) << "Circumcircle for base line " << *CandidateLine.BaseLine << " and third node " << *ThirdNode << " is too big!" << endl;3344 if (ThirdPoint != NULL) 3345 DoLog(1) && (Log() << Verbose(1) << "Circumcircle for base line " << *CandidateLine.BaseLine << " and third node " << *ThirdPoint << " is too big!" << endl); 3064 3346 else 3065 Log() << Verbose(1) << "Circumcircle for base line " << *CandidateLine.BaseLine << " is too big!" << endl;3066 } 3067 3068 Log() << Verbose(1) << "INFO: Sorting candidate list ..." << endl;3347 DoLog(1) && (Log() << Verbose(1) << "Circumcircle for base line " << *CandidateLine.BaseLine << " is too big!" << endl); 3348 } 3349 3350 DoLog(1) && (Log() << Verbose(1) << "INFO: Sorting candidate list ..." << endl); 3069 3351 if (CandidateLine.pointlist.size() > 1) { 3070 3352 CandidateLine.pointlist.unique(); 3071 3353 CandidateLine.pointlist.sort(); //SortCandidates); 3072 3354 } 3073 }; 3355 3356 if ((!CandidateLine.pointlist.empty()) && (!CandidateLine.CheckValidity(RADIUS, LC))) { 3357 DoeLog(0) && (eLog() << Verbose(0) << "There were other points contained in the rolling sphere as well!" << endl); 3358 performCriticalExit(); 3359 } 3360 } 3361 ; 3074 3362 3075 3363 /** Finds the endpoint two lines are sharing. … … 3080 3368 class BoundaryPointSet *Tesselation::GetCommonEndpoint(const BoundaryLineSet * line1, const BoundaryLineSet * line2) const 3081 3369 { 3082 Info FunctionInfo(__func__);3370 Info FunctionInfo(__func__); 3083 3371 const BoundaryLineSet * lines[2] = { line1, line2 }; 3084 3372 class BoundaryPointSet *node = NULL; … … 3087 3375 for (int i = 0; i < 2; i++) 3088 3376 // for both lines 3089 for (int j = 0; j < 2; j++) 3090 { // for both endpoints 3091 OrderTest = OrderMap.insert(pair<int, class BoundaryPointSet *> ( 3092 lines[i]->endpoints[j]->Nr, lines[i]->endpoints[j])); 3093 if (!OrderTest.second) 3094 { // if insertion fails, we have common endpoint 3095 node = OrderTest.first->second; 3096 Log() << Verbose(1) << "Common endpoint of lines " << *line1 3097 << " and " << *line2 << " is: " << *node << "." << endl; 3098 j = 2; 3099 i = 2; 3100 break; 3101 } 3377 for (int j = 0; j < 2; j++) { // for both endpoints 3378 OrderTest = OrderMap.insert(pair<int, class BoundaryPointSet *> (lines[i]->endpoints[j]->Nr, lines[i]->endpoints[j])); 3379 if (!OrderTest.second) { // if insertion fails, we have common endpoint 3380 node = OrderTest.first->second; 3381 DoLog(1) && (Log() << Verbose(1) << "Common endpoint of lines " << *line1 << " and " << *line2 << " is: " << *node << "." << endl); 3382 j = 2; 3383 i = 2; 3384 break; 3102 3385 } 3386 } 3103 3387 return node; 3104 }; 3388 } 3389 ; 3105 3390 3106 3391 /** Finds the boundary points that are closest to a given Vector \a *x. … … 3116 3401 3117 3402 if (LinesOnBoundary.empty()) { 3118 eLog() << Verbose(1) << "There is no tesselation structure to compare the point with, please create one first." << endl;3403 DoeLog(1) && (eLog() << Verbose(1) << "There is no tesselation structure to compare the point with, please create one first." << endl); 3119 3404 return NULL; 3120 3405 } … … 3122 3407 // gather all points close to the desired one 3123 3408 LC->SetIndexToVector(x); // ignore status as we calculate bounds below sensibly 3124 for (int i=0;i<NDIM;i++) // store indices of this cell3409 for (int i = 0; i < NDIM; i++) // store indices of this cell 3125 3410 N[i] = LC->n[i]; 3126 Log() << Verbose(1) << "INFO: Center cell is " << N[0] << ", " << N[1] << ", " << N[2] << " with No. " << LC->index << "." << endl; 3127 3411 DoLog(1) && (Log() << Verbose(1) << "INFO: Center cell is " << N[0] << ", " << N[1] << ", " << N[2] << " with No. " << LC->index << "." << endl); 3128 3412 DistanceToPointMap * points = new DistanceToPointMap; 3129 3413 LC->GetNeighbourBounds(Nlower, Nupper); … … 3132 3416 for (LC->n[1] = Nlower[1]; LC->n[1] <= Nupper[1]; LC->n[1]++) 3133 3417 for (LC->n[2] = Nlower[2]; LC->n[2] <= Nupper[2]; LC->n[2]++) { 3134 const Linked Nodes *List = LC->GetCurrentCell();3418 const LinkedCell::LinkedNodes *List = LC->GetCurrentCell(); 3135 3419 //Log() << Verbose(1) << "The current cell " << LC->n[0] << "," << LC->n[1] << "," << LC->n[2] << endl; 3136 3420 if (List != NULL) { 3137 for (Linked Nodes::const_iterator Runner = List->begin(); Runner != List->end(); Runner++) {3421 for (LinkedCell::LinkedNodes::const_iterator Runner = List->begin(); Runner != List->end(); Runner++) { 3138 3422 FindPoint = PointsOnBoundary.find((*Runner)->nr); 3139 3423 if (FindPoint != PointsOnBoundary.end()) { 3140 points->insert(DistanceToPointPair (FindPoint->second->node->node->DistanceSquared(x), FindPoint->second));3141 Log() << Verbose(1) << "INFO: Putting " << *FindPoint->second << " into the list." << endl;3424 points->insert(DistanceToPointPair(FindPoint->second->node->node->DistanceSquared(*x), FindPoint->second)); 3425 DoLog(1) && (Log() << Verbose(1) << "INFO: Putting " << *FindPoint->second << " into the list." << endl); 3142 3426 } 3143 3427 } 3144 3428 } else { 3145 eLog() << Verbose(1) << "The current cell " << LC->n[0] << "," << LC->n[1] << "," << LC->n[2] << " is invalid!" << endl;3429 DoeLog(1) && (eLog() << Verbose(1) << "The current cell " << LC->n[0] << "," << LC->n[1] << "," << LC->n[2] << " is invalid!" << endl); 3146 3430 } 3147 3431 } … … 3149 3433 // check whether we found some points 3150 3434 if (points->empty()) { 3151 eLog() << Verbose(1) << "There is no nearest point: too far away from the surface." << endl;3152 delete (points);3435 DoeLog(1) && (eLog() << Verbose(1) << "There is no nearest point: too far away from the surface." << endl); 3436 delete (points); 3153 3437 return NULL; 3154 3438 } 3155 3439 return points; 3156 }; 3440 } 3441 ; 3157 3442 3158 3443 /** Finds the boundary line that is closest to a given Vector \a *x. … … 3164 3449 { 3165 3450 Info FunctionInfo(__func__); 3166 3167 3451 // get closest points 3168 DistanceToPointMap * points = FindClosestBoundaryPointsToVector(x, LC);3452 DistanceToPointMap * points = FindClosestBoundaryPointsToVector(x, LC); 3169 3453 if (points == NULL) { 3170 eLog() << Verbose(1) << "There is no nearest point: too far away from the surface." << endl;3454 DoeLog(1) && (eLog() << Verbose(1) << "There is no nearest point: too far away from the surface." << endl); 3171 3455 return NULL; 3172 3456 } 3173 3457 3174 3458 // for each point, check its lines, remember closest 3175 Log() << Verbose(1) << "Finding closest BoundaryLine to " << *x << " ... " << endl;3459 DoLog(1) && (Log() << Verbose(1) << "Finding closest BoundaryLine to " << *x << " ... " << endl); 3176 3460 BoundaryLineSet *ClosestLine = NULL; 3177 3461 double MinDistance = -1.; … … 3182 3466 for (LineMap::iterator LineRunner = Runner->second->lines.begin(); LineRunner != Runner->second->lines.end(); LineRunner++) { 3183 3467 // calculate closest point on line to desired point 3184 helper.CopyVector((LineRunner->second)->endpoints[0]->node->node); 3185 helper.AddVector((LineRunner->second)->endpoints[1]->node->node); 3186 helper.Scale(0.5); 3187 Center.CopyVector(x); 3188 Center.SubtractVector(&helper); 3189 BaseLine.CopyVector((LineRunner->second)->endpoints[0]->node->node); 3190 BaseLine.SubtractVector((LineRunner->second)->endpoints[1]->node->node); 3191 Center.ProjectOntoPlane(&BaseLine); 3468 helper = 0.5 * ((*(LineRunner->second)->endpoints[0]->node->node) + 3469 (*(LineRunner->second)->endpoints[1]->node->node)); 3470 Center = (*x) - helper; 3471 BaseLine = (*(LineRunner->second)->endpoints[0]->node->node) - 3472 (*(LineRunner->second)->endpoints[1]->node->node); 3473 Center.ProjectOntoPlane(BaseLine); 3192 3474 const double distance = Center.NormSquared(); 3193 3475 if ((ClosestLine == NULL) || (distance < MinDistance)) { 3194 3476 // additionally calculate intersection on line (whether it's on the line section or not) 3195 helper.CopyVector(x); 3196 helper.SubtractVector((LineRunner->second)->endpoints[0]->node->node); 3197 helper.SubtractVector(&Center); 3198 const double lengthA = helper.ScalarProduct(&BaseLine); 3199 helper.CopyVector(x); 3200 helper.SubtractVector((LineRunner->second)->endpoints[1]->node->node); 3201 helper.SubtractVector(&Center); 3202 const double lengthB = helper.ScalarProduct(&BaseLine); 3203 if (lengthB*lengthA < 0) { // if have different sign 3477 helper = (*x) - (*(LineRunner->second)->endpoints[0]->node->node) - Center; 3478 const double lengthA = helper.ScalarProduct(BaseLine); 3479 helper = (*x) - (*(LineRunner->second)->endpoints[1]->node->node) - Center; 3480 const double lengthB = helper.ScalarProduct(BaseLine); 3481 if (lengthB * lengthA < 0) { // if have different sign 3204 3482 ClosestLine = LineRunner->second; 3205 3483 MinDistance = distance; 3206 Log() << Verbose(1) << "ACCEPT: New closest line is " << *ClosestLine << " with projected distance " << MinDistance << "." << endl;3484 DoLog(1) && (Log() << Verbose(1) << "ACCEPT: New closest line is " << *ClosestLine << " with projected distance " << MinDistance << "." << endl); 3207 3485 } else { 3208 Log() << Verbose(1) << "REJECT: Intersection is outside of the line section: " << lengthA << " and " << lengthB << "." << endl;3486 DoLog(1) && (Log() << Verbose(1) << "REJECT: Intersection is outside of the line section: " << lengthA << " and " << lengthB << "." << endl); 3209 3487 } 3210 3488 } else { 3211 Log() << Verbose(1) << "REJECT: Point is too further away than present line: " << distance << " >> " << MinDistance << "." << endl;3489 DoLog(1) && (Log() << Verbose(1) << "REJECT: Point is too further away than present line: " << distance << " >> " << MinDistance << "." << endl); 3212 3490 } 3213 3491 } 3214 3492 } 3215 delete (points);3493 delete (points); 3216 3494 // check whether closest line is "too close" :), then it's inside 3217 3495 if (ClosestLine == NULL) { 3218 Log() << Verbose(0) << "Is the only point, no one else is closeby." << endl;3496 DoLog(0) && (Log() << Verbose(0) << "Is the only point, no one else is closeby." << endl); 3219 3497 return NULL; 3220 3498 } 3221 3499 return ClosestLine; 3222 } ;3223 3500 } 3501 ; 3224 3502 3225 3503 /** Finds the triangle that is closest to a given Vector \a *x. … … 3230 3508 TriangleList * Tesselation::FindClosestTrianglesToVector(const Vector *x, const LinkedCell* LC) const 3231 3509 { 3232 Info FunctionInfo(__func__); 3233 3234 // get closest points 3235 DistanceToPointMap * points = FindClosestBoundaryPointsToVector(x,LC); 3510 Info FunctionInfo(__func__); 3511 // get closest points 3512 DistanceToPointMap * points = FindClosestBoundaryPointsToVector(x, LC); 3236 3513 if (points == NULL) { 3237 eLog() << Verbose(1) << "There is no nearest point: too far away from the surface." << endl;3514 DoeLog(1) && (eLog() << Verbose(1) << "There is no nearest point: too far away from the surface." << endl); 3238 3515 return NULL; 3239 3516 } 3240 3517 3241 3518 // for each point, check its lines, remember closest 3242 Log() << Verbose(1) << "Finding closest BoundaryTriangle to " << *x << " ... " << endl;3519 DoLog(1) && (Log() << Verbose(1) << "Finding closest BoundaryTriangle to " << *x << " ... " << endl); 3243 3520 LineSet ClosestLines; 3244 3521 double MinDistance = 1e+16; … … 3250 3527 for (LineMap::iterator LineRunner = Runner->second->lines.begin(); LineRunner != Runner->second->lines.end(); LineRunner++) { 3251 3528 3252 BaseLine .CopyVector((LineRunner->second)->endpoints[0]->node->node);3253 BaseLine.SubtractVector((LineRunner->second)->endpoints[1]->node->node);3529 BaseLine = (*(LineRunner->second)->endpoints[0]->node->node) - 3530 (*(LineRunner->second)->endpoints[1]->node->node); 3254 3531 const double lengthBase = BaseLine.NormSquared(); 3255 3532 3256 BaseLineIntersection.CopyVector(x); 3257 BaseLineIntersection.SubtractVector((LineRunner->second)->endpoints[0]->node->node); 3533 BaseLineIntersection = (*x) - (*(LineRunner->second)->endpoints[0]->node->node); 3258 3534 const double lengthEndA = BaseLineIntersection.NormSquared(); 3259 3535 3260 BaseLineIntersection.CopyVector(x); 3261 BaseLineIntersection.SubtractVector((LineRunner->second)->endpoints[1]->node->node); 3536 BaseLineIntersection = (*x) - (*(LineRunner->second)->endpoints[1]->node->node); 3262 3537 const double lengthEndB = BaseLineIntersection.NormSquared(); 3263 3538 3264 if ((lengthEndA > lengthBase) || (lengthEndB > lengthBase) || ((lengthEndA < MYEPSILON) || (lengthEndB < MYEPSILON))) { // intersection would be outside, take closer endpoint3539 if ((lengthEndA > lengthBase) || (lengthEndB > lengthBase) || ((lengthEndA < MYEPSILON) || (lengthEndB < MYEPSILON))) { // intersection would be outside, take closer endpoint 3265 3540 const double lengthEnd = Min(lengthEndA, lengthEndB); 3266 3541 if (lengthEnd - MinDistance < -MYEPSILON) { // new best line … … 3268 3543 ClosestLines.insert(LineRunner->second); 3269 3544 MinDistance = lengthEnd; 3270 Log() << Verbose(1) << "ACCEPT: Line " << *LineRunner->second << " to endpoint " << *LineRunner->second->endpoints[0]->node << " is closer with " << lengthEnd << "." << endl;3271 } else if (fabs(lengthEnd - MinDistance) < MYEPSILON) { // additional best candidate3545 DoLog(1) && (Log() << Verbose(1) << "ACCEPT: Line " << *LineRunner->second << " to endpoint " << *LineRunner->second->endpoints[0]->node << " is closer with " << lengthEnd << "." << endl); 3546 } else if (fabs(lengthEnd - MinDistance) < MYEPSILON) { // additional best candidate 3272 3547 ClosestLines.insert(LineRunner->second); 3273 Log() << Verbose(1) << "ACCEPT: Line " << *LineRunner->second << " to endpoint " << *LineRunner->second->endpoints[1]->node << " is equally good with " << lengthEnd << "." << endl;3548 DoLog(1) && (Log() << Verbose(1) << "ACCEPT: Line " << *LineRunner->second << " to endpoint " << *LineRunner->second->endpoints[1]->node << " is equally good with " << lengthEnd << "." << endl); 3274 3549 } else { // line is worse 3275 Log() << Verbose(1) << "REJECT: Line " << *LineRunner->second << " to either endpoints is further away than present closest line candidate: " << lengthEndA << ", " << lengthEndB << ", and distance is longer than baseline:" << lengthBase << "." << endl;3550 DoLog(1) && (Log() << Verbose(1) << "REJECT: Line " << *LineRunner->second << " to either endpoints is further away than present closest line candidate: " << lengthEndA << ", " << lengthEndB << ", and distance is longer than baseline:" << lengthBase << "." << endl); 3276 3551 } 3277 3552 } else { // intersection is closer, calculate 3278 3553 // calculate closest point on line to desired point 3279 BaseLineIntersection.CopyVector(x); 3280 BaseLineIntersection.SubtractVector((LineRunner->second)->endpoints[1]->node->node); 3281 Center.CopyVector(&BaseLineIntersection); 3282 Center.ProjectOntoPlane(&BaseLine); 3283 BaseLineIntersection.SubtractVector(&Center); 3554 BaseLineIntersection = (*x) - (*(LineRunner->second)->endpoints[1]->node->node); 3555 Center = BaseLineIntersection; 3556 Center.ProjectOntoPlane(BaseLine); 3557 BaseLineIntersection -= Center; 3284 3558 const double distance = BaseLineIntersection.NormSquared(); 3285 3559 if (Center.NormSquared() > BaseLine.NormSquared()) { 3286 eLog() << Verbose(0) << "Algorithmic error: In second case we have intersection outside of baseline!" << endl;3560 DoeLog(0) && (eLog() << Verbose(0) << "Algorithmic error: In second case we have intersection outside of baseline!" << endl); 3287 3561 } 3288 3562 if ((ClosestLines.empty()) || (distance < MinDistance)) { 3289 3563 ClosestLines.insert(LineRunner->second); 3290 3564 MinDistance = distance; 3291 Log() << Verbose(1) << "ACCEPT: Intersection in between endpoints, new closest line " << *LineRunner->second << " is " << *ClosestLines.begin() << " with projected distance " << MinDistance << "." << endl;3565 DoLog(1) && (Log() << Verbose(1) << "ACCEPT: Intersection in between endpoints, new closest line " << *LineRunner->second << " is " << *ClosestLines.begin() << " with projected distance " << MinDistance << "." << endl); 3292 3566 } else { 3293 Log() << Verbose(2) << "REJECT: Point is further away from line " << *LineRunner->second << " than present closest line: " << distance << " >> " << MinDistance << "." << endl;3567 DoLog(2) && (Log() << Verbose(2) << "REJECT: Point is further away from line " << *LineRunner->second << " than present closest line: " << distance << " >> " << MinDistance << "." << endl); 3294 3568 } 3295 3569 } 3296 3570 } 3297 3571 } 3298 delete (points);3572 delete (points); 3299 3573 3300 3574 // check whether closest line is "too close" :), then it's inside 3301 3575 if (ClosestLines.empty()) { 3302 Log() << Verbose(0) << "Is the only point, no one else is closeby." << endl;3576 DoLog(0) && (Log() << Verbose(0) << "Is the only point, no one else is closeby." << endl); 3303 3577 return NULL; 3304 3578 } … … 3306 3580 for (LineSet::iterator LineRunner = ClosestLines.begin(); LineRunner != ClosestLines.end(); LineRunner++) 3307 3581 for (TriangleMap::iterator Runner = (*LineRunner)->triangles.begin(); Runner != (*LineRunner)->triangles.end(); Runner++) { 3308 candidates->push_back(Runner->second);3309 }3582 candidates->push_back(Runner->second); 3583 } 3310 3584 return candidates; 3311 }; 3585 } 3586 ; 3312 3587 3313 3588 /** Finds closest triangle to a point. … … 3315 3590 * \param *out output stream for debugging 3316 3591 * \param *x Vector to look from 3592 * \param &distance contains found distance on return 3317 3593 * \return list of BoundaryTriangleSet of nearest triangles or NULL. 3318 3594 */ 3319 3595 class BoundaryTriangleSet * Tesselation::FindClosestTriangleToVector(const Vector *x, const LinkedCell* LC) const 3320 3596 { 3321 Info FunctionInfo(__func__);3597 Info FunctionInfo(__func__); 3322 3598 class BoundaryTriangleSet *result = NULL; 3323 3599 TriangleList *triangles = FindClosestTrianglesToVector(x, LC); … … 3330 3606 3331 3607 // go through all and pick the one with the best alignment to x 3332 double MinAlignment = 2. *M_PI;3608 double MinAlignment = 2. * M_PI; 3333 3609 for (TriangleList::iterator Runner = triangles->begin(); Runner != triangles->end(); Runner++) { 3334 3610 (*Runner)->GetCenter(&Center); 3335 helper.CopyVector(x); 3336 helper.SubtractVector(&Center); 3337 const double Alignment = helper.Angle(&(*Runner)->NormalVector); 3611 helper = (*x) - Center; 3612 const double Alignment = helper.Angle((*Runner)->NormalVector); 3338 3613 if (Alignment < MinAlignment) { 3339 3614 result = *Runner; 3340 3615 MinAlignment = Alignment; 3341 Log() << Verbose(1) << "ACCEPT: Triangle " << *result << " is better aligned with " << MinAlignment << "." << endl;3616 DoLog(1) && (Log() << Verbose(1) << "ACCEPT: Triangle " << *result << " is better aligned with " << MinAlignment << "." << endl); 3342 3617 } else { 3343 Log() << Verbose(1) << "REJECT: Triangle " << *result << " is worse aligned with " << MinAlignment << "." << endl;3344 } 3345 } 3346 delete (triangles);3618 DoLog(1) && (Log() << Verbose(1) << "REJECT: Triangle " << *result << " is worse aligned with " << MinAlignment << "." << endl); 3619 } 3620 } 3621 delete (triangles); 3347 3622 3348 3623 return result; 3349 }; 3624 } 3625 ; 3350 3626 3351 3627 /** Checks whether the provided Vector is within the Tesselation structure. … … 3358 3634 bool Tesselation::IsInnerPoint(const Vector &Point, const LinkedCell* const LC) const 3359 3635 { 3360 return (GetDistanceSquaredToSurface(Point, LC) < MYEPSILON); 3361 } 3636 Info FunctionInfo(__func__); 3637 TriangleIntersectionList Intersections(&Point, this, LC); 3638 3639 return Intersections.IsInside(); 3640 } 3641 ; 3362 3642 3363 3643 /** Returns the distance to the surface given by the tesselation. … … 3389 3669 3390 3670 if (triangle == NULL) {// is boundary point or only point in point cloud? 3391 Log() << Verbose(1) << "No triangle given!" << endl;3671 DoLog(1) && (Log() << Verbose(1) << "No triangle given!" << endl); 3392 3672 return -1.; 3393 3673 } else { 3394 Log() << Verbose(1) << "INFO: Closest triangle found is " << *triangle << " with normal vector " << triangle->NormalVector << "." << endl;3674 DoLog(1) && (Log() << Verbose(1) << "INFO: Closest triangle found is " << *triangle << " with normal vector " << triangle->NormalVector << "." << endl); 3395 3675 } 3396 3676 3397 3677 triangle->GetCenter(&Center); 3398 Log() << Verbose(2) << "INFO: Central point of the triangle is " << Center << "." << endl; 3399 DistanceToCenter.CopyVector(&Center); 3400 DistanceToCenter.SubtractVector(&Point); 3401 Log() << Verbose(2) << "INFO: Vector from point to test to center is " << DistanceToCenter << "." << endl; 3678 DoLog(2) && (Log() << Verbose(2) << "INFO: Central point of the triangle is " << Center << "." << endl); 3679 DistanceToCenter = Center - Point; 3680 DoLog(2) && (Log() << Verbose(2) << "INFO: Vector from point to test to center is " << DistanceToCenter << "." << endl); 3402 3681 3403 3682 // check whether we are on boundary 3404 if (fabs(DistanceToCenter.ScalarProduct( &triangle->NormalVector)) < MYEPSILON) {3683 if (fabs(DistanceToCenter.ScalarProduct(triangle->NormalVector)) < MYEPSILON) { 3405 3684 // calculate whether inside of triangle 3406 DistanceToCenter.CopyVector(&Point); 3407 Center.CopyVector(&Point); 3408 Center.SubtractVector(&triangle->NormalVector); // points towards MolCenter 3409 DistanceToCenter.AddVector(&triangle->NormalVector); // points outside 3410 Log() << Verbose(1) << "INFO: Calling Intersection with " << Center << " and " << DistanceToCenter << "." << endl; 3685 DistanceToCenter = Point + triangle->NormalVector; // points outside 3686 Center = Point - triangle->NormalVector; // points towards MolCenter 3687 DoLog(1) && (Log() << Verbose(1) << "INFO: Calling Intersection with " << Center << " and " << DistanceToCenter << "." << endl); 3411 3688 if (triangle->GetIntersectionInsideTriangle(&Center, &DistanceToCenter, &Intersection)) { 3412 Log() << Verbose(1) << Point << " is inner point: sufficiently close to boundary, " << Intersection << "." << endl;3689 DoLog(1) && (Log() << Verbose(1) << Point << " is inner point: sufficiently close to boundary, " << Intersection << "." << endl); 3413 3690 return 0.; 3414 3691 } else { 3415 Log() << Verbose(1) << Point << " is NOT an inner point: on triangle plane but outside of triangle bounds." << endl;3692 DoLog(1) && (Log() << Verbose(1) << Point << " is NOT an inner point: on triangle plane but outside of triangle bounds." << endl); 3416 3693 return false; 3417 3694 } … … 3419 3696 // calculate smallest distance 3420 3697 distance = triangle->GetClosestPointInsideTriangle(&Point, &Intersection); 3421 Log() << Verbose(1) << "Closest point on triangle is " << Intersection << "." << endl;3698 DoLog(1) && (Log() << Verbose(1) << "Closest point on triangle is " << Intersection << "." << endl); 3422 3699 3423 3700 // then check direction to boundary 3424 if (DistanceToCenter.ScalarProduct( &triangle->NormalVector) > MYEPSILON) {3425 Log() << Verbose(1) << Point << " is an inner point, " << distance << " below surface." << endl;3701 if (DistanceToCenter.ScalarProduct(triangle->NormalVector) > MYEPSILON) { 3702 DoLog(1) && (Log() << Verbose(1) << Point << " is an inner point, " << distance << " below surface." << endl); 3426 3703 return -distance; 3427 3704 } else { 3428 Log() << Verbose(1) << Point << " is NOT an inner point, " << distance << " above surface." << endl;3705 DoLog(1) && (Log() << Verbose(1) << Point << " is NOT an inner point, " << distance << " above surface." << endl); 3429 3706 return +distance; 3430 3707 } 3431 3708 } 3432 }; 3433 3434 /** Calculates distance to a tesselated surface. 3709 } 3710 ; 3711 3712 /** Calculates minimum distance from \a&Point to a tesselated surface. 3435 3713 * Combines \sa FindClosestTrianglesToVector() and \sa GetDistanceSquaredToTriangle(). 3436 3714 * \param &Point point to calculate distance from … … 3438 3716 * \return distance squared to closest point on surface 3439 3717 */ 3440 double Tesselation::GetDistanceSquaredToSurface(const Vector &Point, const LinkedCell* const LC) const 3441 { 3442 BoundaryTriangleSet *triangle = FindClosestTriangleToVector(&Point, LC); 3443 const double distance = GetDistanceSquaredToTriangle(Point, triangle); 3444 return Min(distance, LC->RADIUS); 3445 }; 3718 double Tesselation::GetDistanceToSurface(const Vector &Point, const LinkedCell* const LC) const 3719 { 3720 Info FunctionInfo(__func__); 3721 TriangleIntersectionList Intersections(&Point, this, LC); 3722 3723 return Intersections.GetSmallestDistance(); 3724 } 3725 ; 3726 3727 /** Calculates minimum distance from \a&Point to a tesselated surface. 3728 * Combines \sa FindClosestTrianglesToVector() and \sa GetDistanceSquaredToTriangle(). 3729 * \param &Point point to calculate distance from 3730 * \param *LC needed for finding closest points fast 3731 * \return distance squared to closest point on surface 3732 */ 3733 BoundaryTriangleSet * Tesselation::GetClosestTriangleOnSurface(const Vector &Point, const LinkedCell* const LC) const 3734 { 3735 Info FunctionInfo(__func__); 3736 TriangleIntersectionList Intersections(&Point, this, LC); 3737 3738 return Intersections.GetClosestTriangle(); 3739 } 3740 ; 3446 3741 3447 3742 /** Gets all points connected to the provided point by triangulation lines. … … 3453 3748 TesselPointSet * Tesselation::GetAllConnectedPoints(const TesselPoint* const Point) const 3454 3749 { 3455 Info FunctionInfo(__func__);3456 TesselPointSet *connectedPoints = new TesselPointSet;3750 Info FunctionInfo(__func__); 3751 TesselPointSet *connectedPoints = new TesselPointSet; 3457 3752 class BoundaryPointSet *ReferencePoint = NULL; 3458 3753 TesselPoint* current; 3459 3754 bool takePoint = false; 3460 3461 3755 // find the respective boundary point 3462 3756 PointMap::const_iterator PointRunner = PointsOnBoundary.find(Point->nr); … … 3464 3758 ReferencePoint = PointRunner->second; 3465 3759 } else { 3466 eLog() << Verbose(2) << "GetAllConnectedPoints() could not find the BoundaryPoint belonging to " << *Point << "." << endl;3760 DoeLog(2) && (eLog() << Verbose(2) << "GetAllConnectedPoints() could not find the BoundaryPoint belonging to " << *Point << "." << endl); 3467 3761 ReferencePoint = NULL; 3468 3762 } … … 3470 3764 // little trick so that we look just through lines connect to the BoundaryPoint 3471 3765 // OR fall-back to look through all lines if there is no such BoundaryPoint 3472 const LineMap *Lines;; 3766 const LineMap *Lines; 3767 ; 3473 3768 if (ReferencePoint != NULL) 3474 3769 Lines = &(ReferencePoint->lines); … … 3477 3772 LineMap::const_iterator findLines = Lines->begin(); 3478 3773 while (findLines != Lines->end()) { 3479 takePoint = false;3480 3481 if (findLines->second->endpoints[0]->Nr == Point->nr) {3482 takePoint = true;3483 current = findLines->second->endpoints[1]->node;3484 } else if (findLines->second->endpoints[1]->Nr == Point->nr) {3485 takePoint = true;3486 current = findLines->second->endpoints[0]->node;3487 }3488 3489 if (takePoint) {3490 Log() << Verbose(1) << "INFO: Endpoint " << *current << " of line " << *(findLines->second) << " is enlisted." << endl;3491 connectedPoints->insert(current);3492 }3493 3494 findLines++;3774 takePoint = false; 3775 3776 if (findLines->second->endpoints[0]->Nr == Point->nr) { 3777 takePoint = true; 3778 current = findLines->second->endpoints[1]->node; 3779 } else if (findLines->second->endpoints[1]->Nr == Point->nr) { 3780 takePoint = true; 3781 current = findLines->second->endpoints[0]->node; 3782 } 3783 3784 if (takePoint) { 3785 DoLog(1) && (Log() << Verbose(1) << "INFO: Endpoint " << *current << " of line " << *(findLines->second) << " is enlisted." << endl); 3786 connectedPoints->insert(current); 3787 } 3788 3789 findLines++; 3495 3790 } 3496 3791 3497 3792 if (connectedPoints->empty()) { // if have not found any points 3498 eLog() << Verbose(1) << "We have not found any connected points to " << *Point<< "." << endl;3793 DoeLog(1) && (eLog() << Verbose(1) << "We have not found any connected points to " << *Point << "." << endl); 3499 3794 return NULL; 3500 3795 } 3501 3796 3502 3797 return connectedPoints; 3503 } ;3504 3798 } 3799 ; 3505 3800 3506 3801 /** Gets all points connected to the provided point by triangulation lines, ordered such that we have the circle round the point. … … 3518 3813 TesselPointList * Tesselation::GetCircleOfConnectedTriangles(TesselPointSet *SetOfNeighbours, const TesselPoint* const Point, const Vector * const Reference) const 3519 3814 { 3520 Info FunctionInfo(__func__);3815 Info FunctionInfo(__func__); 3521 3816 map<double, TesselPoint*> anglesOfPoints; 3522 3817 TesselPointList *connectedCircle = new TesselPointList; … … 3525 3820 Vector OrthogonalVector; 3526 3821 Vector helper; 3527 const TesselPoint * const TrianglePoints[3] = { Point, NULL, NULL};3822 const TesselPoint * const TrianglePoints[3] = { Point, NULL, NULL }; 3528 3823 TriangleList *triangles = NULL; 3529 3824 3530 3825 if (SetOfNeighbours == NULL) { 3531 eLog() << Verbose(2) << "Could not find any connected points!" << endl;3532 delete (connectedCircle);3826 DoeLog(2) && (eLog() << Verbose(2) << "Could not find any connected points!" << endl); 3827 delete (connectedCircle); 3533 3828 return NULL; 3534 3829 } … … 3538 3833 if ((triangles != NULL) && (!triangles->empty())) { 3539 3834 for (TriangleList::iterator Runner = triangles->begin(); Runner != triangles->end(); Runner++) 3540 PlaneNormal .AddVector(&(*Runner)->NormalVector);3835 PlaneNormal += (*Runner)->NormalVector; 3541 3836 } else { 3542 eLog() << Verbose(0) << "Could not find any triangles for point " << *Point << "." << endl;3837 DoeLog(0) && (eLog() << Verbose(0) << "Could not find any triangles for point " << *Point << "." << endl); 3543 3838 performCriticalExit(); 3544 3839 } 3545 PlaneNormal.Scale(1.0 /triangles->size());3546 Log() << Verbose(1) << "INFO: Calculated PlaneNormal of all circle points is " << PlaneNormal << "." << endl;3840 PlaneNormal.Scale(1.0 / triangles->size()); 3841 DoLog(1) && (Log() << Verbose(1) << "INFO: Calculated PlaneNormal of all circle points is " << PlaneNormal << "." << endl); 3547 3842 PlaneNormal.Normalize(); 3548 3843 3549 3844 // construct one orthogonal vector 3550 3845 if (Reference != NULL) { 3551 AngleZero.CopyVector(Reference); 3552 AngleZero.SubtractVector(Point->node); 3553 AngleZero.ProjectOntoPlane(&PlaneNormal); 3554 } 3555 if ((Reference == NULL) || (AngleZero.NormSquared() < MYEPSILON )) { 3556 Log() << Verbose(1) << "Using alternatively " << *(*SetOfNeighbours->begin())->node << " as angle 0 referencer." << endl; 3557 AngleZero.CopyVector((*SetOfNeighbours->begin())->node); 3558 AngleZero.SubtractVector(Point->node); 3559 AngleZero.ProjectOntoPlane(&PlaneNormal); 3846 AngleZero = (*Reference) - (*Point->node); 3847 AngleZero.ProjectOntoPlane(PlaneNormal); 3848 } 3849 if ((Reference == NULL) || (AngleZero.NormSquared() < MYEPSILON)) { 3850 DoLog(1) && (Log() << Verbose(1) << "Using alternatively " << *(*SetOfNeighbours->begin())->node << " as angle 0 referencer." << endl); 3851 AngleZero = (*(*SetOfNeighbours->begin())->node) - (*Point->node); 3852 AngleZero.ProjectOntoPlane(PlaneNormal); 3560 3853 if (AngleZero.NormSquared() < MYEPSILON) { 3561 eLog() << Verbose(0) << "CRITIAL: AngleZero is 0 even with alternative reference. The algorithm has to be changed here!" << endl;3854 DoeLog(0) && (eLog() << Verbose(0) << "CRITIAL: AngleZero is 0 even with alternative reference. The algorithm has to be changed here!" << endl); 3562 3855 performCriticalExit(); 3563 3856 } 3564 3857 } 3565 Log() << Verbose(1) << "INFO: Reference vector on this plane representing angle 0 is " << AngleZero << "." << endl;3858 DoLog(1) && (Log() << Verbose(1) << "INFO: Reference vector on this plane representing angle 0 is " << AngleZero << "." << endl); 3566 3859 if (AngleZero.NormSquared() > MYEPSILON) 3567 OrthogonalVector .MakeNormalVector(&PlaneNormal, &AngleZero);3860 OrthogonalVector = Plane(PlaneNormal, AngleZero,0).getNormal(); 3568 3861 else 3569 OrthogonalVector.MakeNormal Vector(&PlaneNormal);3570 Log() << Verbose(1) << "INFO: OrthogonalVector on plane is " << OrthogonalVector << "." << endl;3862 OrthogonalVector.MakeNormalTo(PlaneNormal); 3863 DoLog(1) && (Log() << Verbose(1) << "INFO: OrthogonalVector on plane is " << OrthogonalVector << "." << endl); 3571 3864 3572 3865 // go through all connected points and calculate angle 3573 3866 for (TesselPointSet::iterator listRunner = SetOfNeighbours->begin(); listRunner != SetOfNeighbours->end(); listRunner++) { 3574 helper.CopyVector((*listRunner)->node); 3575 helper.SubtractVector(Point->node); 3576 helper.ProjectOntoPlane(&PlaneNormal); 3867 helper = (*(*listRunner)->node) - (*Point->node); 3868 helper.ProjectOntoPlane(PlaneNormal); 3577 3869 double angle = GetAngle(helper, AngleZero, OrthogonalVector); 3578 Log() << Verbose(0) << "INFO: Calculated angle is " << angle << " for point " << **listRunner << "." << endl;3579 anglesOfPoints.insert(pair<double, TesselPoint*> (angle, (*listRunner)));3580 } 3581 3582 for (map<double, TesselPoint*>::iterator AngleRunner = anglesOfPoints.begin(); AngleRunner != anglesOfPoints.end(); AngleRunner++) {3870 DoLog(0) && (Log() << Verbose(0) << "INFO: Calculated angle is " << angle << " for point " << **listRunner << "." << endl); 3871 anglesOfPoints.insert(pair<double, TesselPoint*> (angle, (*listRunner))); 3872 } 3873 3874 for (map<double, TesselPoint*>::iterator AngleRunner = anglesOfPoints.begin(); AngleRunner != anglesOfPoints.end(); AngleRunner++) { 3583 3875 connectedCircle->push_back(AngleRunner->second); 3584 3876 } … … 3610 3902 3611 3903 if (SetOfNeighbours == NULL) { 3612 eLog() << Verbose(2) << "Could not find any connected points!" << endl;3613 delete (connectedCircle);3904 DoeLog(2) && (eLog() << Verbose(2) << "Could not find any connected points!" << endl); 3905 delete (connectedCircle); 3614 3906 return NULL; 3615 3907 } … … 3622 3914 } 3623 3915 3624 Log() << Verbose(1) << "INFO: Point is " << *Point << " and Reference is " << *Reference << "." << endl;3916 DoLog(1) && (Log() << Verbose(1) << "INFO: Point is " << *Point << " and Reference is " << *Reference << "." << endl); 3625 3917 // calculate central point 3626 3627 3918 TesselPointSet::const_iterator TesselA = SetOfNeighbours->begin(); 3628 3919 TesselPointSet::const_iterator TesselB = SetOfNeighbours->begin(); … … 3633 3924 int counter = 0; 3634 3925 while (TesselC != SetOfNeighbours->end()) { 3635 helper.MakeNormalVector((*TesselA)->node, (*TesselB)->node, (*TesselC)->node); 3636 Log() << Verbose(0) << "Making normal vector out of " << *(*TesselA) << ", " << *(*TesselB) << " and " << *(*TesselC) << ":" << helper << endl; 3926 helper = Plane(*((*TesselA)->node), 3927 *((*TesselB)->node), 3928 *((*TesselC)->node)).getNormal(); 3929 DoLog(0) && (Log() << Verbose(0) << "Making normal vector out of " << *(*TesselA) << ", " << *(*TesselB) << " and " << *(*TesselC) << ":" << helper << endl); 3637 3930 counter++; 3638 3931 TesselA++; 3639 3932 TesselB++; 3640 3933 TesselC++; 3641 PlaneNormal .AddVector(&helper);3934 PlaneNormal += helper; 3642 3935 } 3643 3936 //Log() << Verbose(0) << "Summed vectors " << center << "; number of points " << connectedPoints.size() 3644 3937 // << "; scale factor " << counter; 3645 PlaneNormal.Scale(1.0 /(double)counter);3646 // Log() << Verbose(1) << "INFO: Calculated center of all circle points is " << center << "." << endl;3647 //3648 // // projection plane of the circle is at the closes Point and normal is pointing away from center of all circle points3649 // PlaneNormal.CopyVector(Point->node);3650 // PlaneNormal.SubtractVector(¢er);3651 // PlaneNormal.Normalize();3652 Log() << Verbose(1) << "INFO: Calculated plane normal of circle is " << PlaneNormal << "." << endl;3938 PlaneNormal.Scale(1.0 / (double) counter); 3939 // Log() << Verbose(1) << "INFO: Calculated center of all circle points is " << center << "." << endl; 3940 // 3941 // // projection plane of the circle is at the closes Point and normal is pointing away from center of all circle points 3942 // PlaneNormal.CopyVector(Point->node); 3943 // PlaneNormal.SubtractVector(¢er); 3944 // PlaneNormal.Normalize(); 3945 DoLog(1) && (Log() << Verbose(1) << "INFO: Calculated plane normal of circle is " << PlaneNormal << "." << endl); 3653 3946 3654 3947 // construct one orthogonal vector 3655 3948 if (Reference != NULL) { 3656 AngleZero.CopyVector(Reference); 3657 AngleZero.SubtractVector(Point->node); 3658 AngleZero.ProjectOntoPlane(&PlaneNormal); 3949 AngleZero = (*Reference) - (*Point->node); 3950 AngleZero.ProjectOntoPlane(PlaneNormal); 3659 3951 } 3660 3952 if ((Reference == NULL) || (AngleZero.NormSquared() < MYEPSILON )) { 3661 Log() << Verbose(1) << "Using alternatively " << *(*SetOfNeighbours->begin())->node << " as angle 0 referencer." << endl; 3662 AngleZero.CopyVector((*SetOfNeighbours->begin())->node); 3663 AngleZero.SubtractVector(Point->node); 3664 AngleZero.ProjectOntoPlane(&PlaneNormal); 3953 DoLog(1) && (Log() << Verbose(1) << "Using alternatively " << *(*SetOfNeighbours->begin())->node << " as angle 0 referencer." << endl); 3954 AngleZero = (*(*SetOfNeighbours->begin())->node) - (*Point->node); 3955 AngleZero.ProjectOntoPlane(PlaneNormal); 3665 3956 if (AngleZero.NormSquared() < MYEPSILON) { 3666 eLog() << Verbose(0) << "CRITIAL: AngleZero is 0 even with alternative reference. The algorithm has to be changed here!" << endl;3957 DoeLog(0) && (eLog() << Verbose(0) << "CRITIAL: AngleZero is 0 even with alternative reference. The algorithm has to be changed here!" << endl); 3667 3958 performCriticalExit(); 3668 3959 } 3669 3960 } 3670 Log() << Verbose(1) << "INFO: Reference vector on this plane representing angle 0 is " << AngleZero << "." << endl;3961 DoLog(1) && (Log() << Verbose(1) << "INFO: Reference vector on this plane representing angle 0 is " << AngleZero << "." << endl); 3671 3962 if (AngleZero.NormSquared() > MYEPSILON) 3672 OrthogonalVector .MakeNormalVector(&PlaneNormal, &AngleZero);3963 OrthogonalVector = Plane(PlaneNormal, AngleZero,0).getNormal(); 3673 3964 else 3674 OrthogonalVector.MakeNormal Vector(&PlaneNormal);3675 Log() << Verbose(1) << "INFO: OrthogonalVector on plane is " << OrthogonalVector << "." << endl;3965 OrthogonalVector.MakeNormalTo(PlaneNormal); 3966 DoLog(1) && (Log() << Verbose(1) << "INFO: OrthogonalVector on plane is " << OrthogonalVector << "." << endl); 3676 3967 3677 3968 // go through all connected points and calculate angle 3678 pair <map<double, TesselPoint*>::iterator, bool> InserterTest;3969 pair<map<double, TesselPoint*>::iterator, bool> InserterTest; 3679 3970 for (TesselPointSet::iterator listRunner = SetOfNeighbours->begin(); listRunner != SetOfNeighbours->end(); listRunner++) { 3680 helper.CopyVector((*listRunner)->node); 3681 helper.SubtractVector(Point->node); 3682 helper.ProjectOntoPlane(&PlaneNormal); 3971 helper = (*(*listRunner)->node) - (*Point->node); 3972 helper.ProjectOntoPlane(PlaneNormal); 3683 3973 double angle = GetAngle(helper, AngleZero, OrthogonalVector); 3684 3974 if (angle > M_PI) // the correction is of no use here (and not desired) 3685 angle = 2. *M_PI - angle;3686 Log() << Verbose(0) << "INFO: Calculated angle between " << helper << " and " << AngleZero << " is " << angle << " for point " << **listRunner << "." << endl;3687 InserterTest = anglesOfPoints.insert(pair<double, TesselPoint*> (angle, (*listRunner)));3975 angle = 2. * M_PI - angle; 3976 DoLog(0) && (Log() << Verbose(0) << "INFO: Calculated angle between " << helper << " and " << AngleZero << " is " << angle << " for point " << **listRunner << "." << endl); 3977 InserterTest = anglesOfPoints.insert(pair<double, TesselPoint*> (angle, (*listRunner))); 3688 3978 if (!InserterTest.second) { 3689 eLog() << Verbose(0) << "GetCircleOfSetOfPoints() got two atoms with same angle: " << *((InserterTest.first)->second) << " and " << (*listRunner) << endl;3979 DoeLog(0) && (eLog() << Verbose(0) << "GetCircleOfSetOfPoints() got two atoms with same angle: " << *((InserterTest.first)->second) << " and " << (*listRunner) << endl); 3690 3980 performCriticalExit(); 3691 3981 } 3692 3982 } 3693 3983 3694 for (map<double, TesselPoint*>::iterator AngleRunner = anglesOfPoints.begin(); AngleRunner != anglesOfPoints.end(); AngleRunner++) {3984 for (map<double, TesselPoint*>::iterator AngleRunner = anglesOfPoints.begin(); AngleRunner != anglesOfPoints.end(); AngleRunner++) { 3695 3985 connectedCircle->push_back(AngleRunner->second); 3696 3986 } … … 3707 3997 ListOfTesselPointList * Tesselation::GetPathsOfConnectedPoints(const TesselPoint* const Point) const 3708 3998 { 3709 Info FunctionInfo(__func__);3999 Info FunctionInfo(__func__); 3710 4000 map<double, TesselPoint*> anglesOfPoints; 3711 list< TesselPointList *> *ListOfPaths = new list< TesselPointList *>;4001 list<TesselPointList *> *ListOfPaths = new list<TesselPointList *> ; 3712 4002 TesselPointList *connectedPath = NULL; 3713 4003 Vector center; … … 3721 4011 class BoundaryLineSet *CurrentLine = NULL; 3722 4012 class BoundaryLineSet *StartLine = NULL; 3723 3724 4013 // find the respective boundary point 3725 4014 PointMap::const_iterator PointRunner = PointsOnBoundary.find(Point->nr); … … 3727 4016 ReferencePoint = PointRunner->second; 3728 4017 } else { 3729 eLog() << Verbose(1) << "GetPathOfConnectedPoints() could not find the BoundaryPoint belonging to " << *Point << "." << endl;4018 DoeLog(1) && (eLog() << Verbose(1) << "GetPathOfConnectedPoints() could not find the BoundaryPoint belonging to " << *Point << "." << endl); 3730 4019 return NULL; 3731 4020 } 3732 4021 3733 map <class BoundaryLineSet *, bool> TouchedLine;3734 map <class BoundaryTriangleSet *, bool> TouchedTriangle;3735 map <class BoundaryLineSet *, bool>::iterator LineRunner;3736 map <class BoundaryTriangleSet *, bool>::iterator TriangleRunner;4022 map<class BoundaryLineSet *, bool> TouchedLine; 4023 map<class BoundaryTriangleSet *, bool> TouchedTriangle; 4024 map<class BoundaryLineSet *, bool>::iterator LineRunner; 4025 map<class BoundaryTriangleSet *, bool>::iterator TriangleRunner; 3737 4026 for (LineMap::iterator Runner = ReferencePoint->lines.begin(); Runner != ReferencePoint->lines.end(); Runner++) { 3738 TouchedLine.insert( pair <class BoundaryLineSet *, bool>(Runner->second, false));4027 TouchedLine.insert(pair<class BoundaryLineSet *, bool> (Runner->second, false)); 3739 4028 for (TriangleMap::iterator Sprinter = Runner->second->triangles.begin(); Sprinter != Runner->second->triangles.end(); Sprinter++) 3740 TouchedTriangle.insert( pair <class BoundaryTriangleSet *, bool>(Sprinter->second, false));4029 TouchedTriangle.insert(pair<class BoundaryTriangleSet *, bool> (Sprinter->second, false)); 3741 4030 } 3742 4031 if (!ReferencePoint->lines.empty()) { … … 3744 4033 LineRunner = TouchedLine.find(runner->second); 3745 4034 if (LineRunner == TouchedLine.end()) { 3746 eLog() << Verbose(1) << "I could not find " << *runner->second << " in the touched list." << endl;4035 DoeLog(1) && (eLog() << Verbose(1) << "I could not find " << *runner->second << " in the touched list." << endl); 3747 4036 } else if (!LineRunner->second) { 3748 4037 LineRunner->second = true; … … 3752 4041 StartLine = CurrentLine; 3753 4042 CurrentPoint = CurrentLine->GetOtherEndpoint(ReferencePoint); 3754 Log() << Verbose(1)<< "INFO: Beginning path retrieval at " << *CurrentPoint << " of line " << *CurrentLine << "." << endl;4043 DoLog(1) && (Log() << Verbose(1) << "INFO: Beginning path retrieval at " << *CurrentPoint << " of line " << *CurrentLine << "." << endl); 3755 4044 do { 3756 4045 // push current one 3757 Log() << Verbose(1) << "INFO: Putting " << *CurrentPoint << " at end of path." << endl;4046 DoLog(1) && (Log() << Verbose(1) << "INFO: Putting " << *CurrentPoint << " at end of path." << endl); 3758 4047 connectedPath->push_back(CurrentPoint->node); 3759 4048 3760 4049 // find next triangle 3761 4050 for (TriangleMap::iterator Runner = CurrentLine->triangles.begin(); Runner != CurrentLine->triangles.end(); Runner++) { 3762 Log() << Verbose(1) << "INFO: Inspecting triangle " << *Runner->second << "." << endl;4051 DoLog(1) && (Log() << Verbose(1) << "INFO: Inspecting triangle " << *Runner->second << "." << endl); 3763 4052 if ((Runner->second != triangle)) { // look for first triangle not equal to old one 3764 4053 triangle = Runner->second; … … 3767 4056 if (!TriangleRunner->second) { 3768 4057 TriangleRunner->second = true; 3769 Log() << Verbose(1) << "INFO: Connecting triangle is " << *triangle << "." << endl;4058 DoLog(1) && (Log() << Verbose(1) << "INFO: Connecting triangle is " << *triangle << "." << endl); 3770 4059 break; 3771 4060 } else { 3772 Log() << Verbose(1) << "INFO: Skipping " << *triangle << ", as we have already visited it." << endl;4061 DoLog(1) && (Log() << Verbose(1) << "INFO: Skipping " << *triangle << ", as we have already visited it." << endl); 3773 4062 triangle = NULL; 3774 4063 } 3775 4064 } else { 3776 eLog() << Verbose(1) << "I could not find " << *triangle << " in the touched list." << endl;4065 DoeLog(1) && (eLog() << Verbose(1) << "I could not find " << *triangle << " in the touched list." << endl); 3777 4066 triangle = NULL; 3778 4067 } … … 3782 4071 break; 3783 4072 // find next line 3784 for (int i =0;i<3;i++) {4073 for (int i = 0; i < 3; i++) { 3785 4074 if ((triangle->lines[i] != CurrentLine) && (triangle->lines[i]->ContainsBoundaryPoint(ReferencePoint))) { // not the current line and still containing Point 3786 4075 CurrentLine = triangle->lines[i]; 3787 Log() << Verbose(1) << "INFO: Connecting line is " << *CurrentLine << "." << endl;4076 DoLog(1) && (Log() << Verbose(1) << "INFO: Connecting line is " << *CurrentLine << "." << endl); 3788 4077 break; 3789 4078 } … … 3791 4080 LineRunner = TouchedLine.find(CurrentLine); 3792 4081 if (LineRunner == TouchedLine.end()) 3793 eLog() << Verbose(1) << "I could not find " << *CurrentLine << " in the touched list." << endl;4082 DoeLog(1) && (eLog() << Verbose(1) << "I could not find " << *CurrentLine << " in the touched list." << endl); 3794 4083 else 3795 4084 LineRunner->second = true; … … 3799 4088 } while (CurrentLine != StartLine); 3800 4089 // last point is missing, as it's on start line 3801 Log() << Verbose(1) << "INFO: Putting " << *CurrentPoint << " at end of path." << endl;4090 DoLog(1) && (Log() << Verbose(1) << "INFO: Putting " << *CurrentPoint << " at end of path." << endl); 3802 4091 if (StartLine->GetOtherEndpoint(ReferencePoint)->node != connectedPath->back()) 3803 4092 connectedPath->push_back(StartLine->GetOtherEndpoint(ReferencePoint)->node); … … 3805 4094 ListOfPaths->push_back(connectedPath); 3806 4095 } else { 3807 Log() << Verbose(1) << "INFO: Skipping " << *runner->second << ", as we have already visited it." << endl;4096 DoLog(1) && (Log() << Verbose(1) << "INFO: Skipping " << *runner->second << ", as we have already visited it." << endl); 3808 4097 } 3809 4098 } 3810 4099 } else { 3811 eLog() << Verbose(1) << "There are no lines attached to " << *ReferencePoint << "." << endl;4100 DoeLog(1) && (eLog() << Verbose(1) << "There are no lines attached to " << *ReferencePoint << "." << endl); 3812 4101 } 3813 4102 … … 3823 4112 ListOfTesselPointList * Tesselation::GetClosedPathsOfConnectedPoints(const TesselPoint* const Point) const 3824 4113 { 3825 Info FunctionInfo(__func__);4114 Info FunctionInfo(__func__); 3826 4115 list<TesselPointList *> *ListofPaths = GetPathsOfConnectedPoints(Point); 3827 list<TesselPointList *> *ListofClosedPaths = new list<TesselPointList *> ;4116 list<TesselPointList *> *ListofClosedPaths = new list<TesselPointList *> ; 3828 4117 TesselPointList *connectedPath = NULL; 3829 4118 TesselPointList *newPath = NULL; 3830 4119 int count = 0; 3831 3832 3833 4120 TesselPointList::iterator CircleRunner; 3834 4121 TesselPointList::iterator CircleStart; 3835 4122 3836 for (list<TesselPointList *>::iterator ListRunner = ListofPaths->begin(); ListRunner != ListofPaths->end(); ListRunner++) {4123 for (list<TesselPointList *>::iterator ListRunner = ListofPaths->begin(); ListRunner != ListofPaths->end(); ListRunner++) { 3837 4124 connectedPath = *ListRunner; 3838 4125 3839 Log() << Verbose(1) << "INFO: Current path is " << connectedPath << "." << endl;4126 DoLog(1) && (Log() << Verbose(1) << "INFO: Current path is " << connectedPath << "." << endl); 3840 4127 3841 4128 // go through list, look for reappearance of starting Point and count 3842 4129 CircleStart = connectedPath->begin(); 3843 3844 4130 // go through list, look for reappearance of starting Point and create list 3845 4131 TesselPointList::iterator Marker = CircleStart; … … 3847 4133 if ((*CircleRunner == *CircleStart) && (CircleRunner != CircleStart)) { // is not the very first point 3848 4134 // we have a closed circle from Marker to new Marker 3849 Log() << Verbose(1) << count+1 << ". closed path consists of: ";4135 DoLog(1) && (Log() << Verbose(1) << count + 1 << ". closed path consists of: "); 3850 4136 newPath = new TesselPointList; 3851 4137 TesselPointList::iterator CircleSprinter = Marker; 3852 4138 for (; CircleSprinter != CircleRunner; CircleSprinter++) { 3853 4139 newPath->push_back(*CircleSprinter); 3854 Log() << Verbose(0) << (**CircleSprinter) << " <-> ";4140 DoLog(0) && (Log() << Verbose(0) << (**CircleSprinter) << " <-> "); 3855 4141 } 3856 Log() << Verbose(0) << ".." << endl;4142 DoLog(0) && (Log() << Verbose(0) << ".." << endl); 3857 4143 count++; 3858 4144 Marker = CircleRunner; … … 3863 4149 } 3864 4150 } 3865 Log() << Verbose(1) << "INFO: " << count << " closed additional path(s) have been created." << endl;4151 DoLog(1) && (Log() << Verbose(1) << "INFO: " << count << " closed additional path(s) have been created." << endl); 3866 4152 3867 4153 // delete list of paths … … 3869 4155 connectedPath = *(ListofPaths->begin()); 3870 4156 ListofPaths->remove(connectedPath); 3871 delete (connectedPath);3872 } 3873 delete (ListofPaths);4157 delete (connectedPath); 4158 } 4159 delete (ListofPaths); 3874 4160 3875 4161 // exit 3876 4162 return ListofClosedPaths; 3877 } ;3878 4163 } 4164 ; 3879 4165 3880 4166 /** Gets all belonging triangles for a given BoundaryPointSet. … … 3885 4171 TriangleSet *Tesselation::GetAllTriangles(const BoundaryPointSet * const Point) const 3886 4172 { 3887 Info FunctionInfo(__func__);3888 TriangleSet *connectedTriangles = new TriangleSet;4173 Info FunctionInfo(__func__); 4174 TriangleSet *connectedTriangles = new TriangleSet; 3889 4175 3890 4176 if (Point == NULL) { 3891 eLog() << Verbose(1) << "Point given is NULL." << endl;4177 DoeLog(1) && (eLog() << Verbose(1) << "Point given is NULL." << endl); 3892 4178 } else { 3893 4179 // go through its lines and insert all triangles 3894 4180 for (LineMap::const_iterator LineRunner = Point->lines.begin(); LineRunner != Point->lines.end(); LineRunner++) 3895 4181 for (TriangleMap::iterator TriangleRunner = (LineRunner->second)->triangles.begin(); TriangleRunner != (LineRunner->second)->triangles.end(); TriangleRunner++) { 3896 connectedTriangles->insert(TriangleRunner->second);3897 }4182 connectedTriangles->insert(TriangleRunner->second); 4183 } 3898 4184 } 3899 4185 3900 4186 return connectedTriangles; 3901 } ;3902 4187 } 4188 ; 3903 4189 3904 4190 /** Removes a boundary point from the envelope while keeping it closed. … … 3913 4199 * \return volume added to the volume inside the tesselated surface by the removal 3914 4200 */ 3915 double Tesselation::RemovePointFromTesselatedSurface(class BoundaryPointSet *point) { 4201 double Tesselation::RemovePointFromTesselatedSurface(class BoundaryPointSet *point) 4202 { 3916 4203 class BoundaryLineSet *line = NULL; 3917 4204 class BoundaryTriangleSet *triangle = NULL; … … 3921 4208 3922 4209 if (point == NULL) { 3923 eLog() << Verbose(1) << "Cannot remove the point " << point << ", it's NULL!" << endl;4210 DoeLog(1) && (eLog() << Verbose(1) << "Cannot remove the point " << point << ", it's NULL!" << endl); 3924 4211 return 0.; 3925 4212 } else 3926 Log() << Verbose(0) << "Removing point " << *point << " from tesselated boundary ..." << endl;4213 DoLog(0) && (Log() << Verbose(0) << "Removing point " << *point << " from tesselated boundary ..." << endl); 3927 4214 3928 4215 // copy old location for the volume 3929 OldPoint .CopyVector(point->node->node);4216 OldPoint = (*point->node->node); 3930 4217 3931 4218 // get list of connected points 3932 4219 if (point->lines.empty()) { 3933 eLog() << Verbose(1) << "Cannot remove the point " << *point << ", it's connected to no lines!" << endl;4220 DoeLog(1) && (eLog() << Verbose(1) << "Cannot remove the point " << *point << ", it's connected to no lines!" << endl); 3934 4221 return 0.; 3935 4222 } … … 3940 4227 // gather all triangles 3941 4228 for (LineMap::iterator LineRunner = point->lines.begin(); LineRunner != point->lines.end(); LineRunner++) 3942 count +=LineRunner->second->triangles.size();4229 count += LineRunner->second->triangles.size(); 3943 4230 TriangleMap Candidates; 3944 4231 for (LineMap::iterator LineRunner = point->lines.begin(); LineRunner != point->lines.end(); LineRunner++) { … … 3946 4233 for (TriangleMap::iterator TriangleRunner = line->triangles.begin(); TriangleRunner != line->triangles.end(); TriangleRunner++) { 3947 4234 triangle = TriangleRunner->second; 3948 Candidates.insert( TrianglePair (triangle->Nr, triangle));4235 Candidates.insert(TrianglePair(triangle->Nr, triangle)); 3949 4236 } 3950 4237 } 3951 4238 3952 4239 // remove all triangles 3953 count =0;4240 count = 0; 3954 4241 NormalVector.Zero(); 3955 4242 for (TriangleMap::iterator Runner = Candidates.begin(); Runner != Candidates.end(); Runner++) { 3956 Log() << Verbose(1) << "INFO: Removing triangle " << *(Runner->second) << "." << endl;3957 NormalVector .SubtractVector(&Runner->second->NormalVector); // has to point inward4243 DoLog(1) && (Log() << Verbose(1) << "INFO: Removing triangle " << *(Runner->second) << "." << endl); 4244 NormalVector -= Runner->second->NormalVector; // has to point inward 3958 4245 RemoveTesselationTriangle(Runner->second); 3959 4246 count++; 3960 4247 } 3961 Log() << Verbose(1) << count << " triangles were removed." << endl;4248 DoLog(1) && (Log() << Verbose(1) << count << " triangles were removed." << endl); 3962 4249 3963 4250 list<TesselPointList *>::iterator ListAdvance = ListOfClosedPaths->begin(); … … 3968 4255 double smallestangle; 3969 4256 Vector Point, Reference, OrthogonalVector; 3970 if (count > 2) { // less than three triangles, then nothing will be created4257 if (count > 2) { // less than three triangles, then nothing will be created 3971 4258 class TesselPoint *TriangleCandidates[3]; 3972 4259 count = 0; 3973 for ( ; ListRunner != ListOfClosedPaths->end(); ListRunner = ListAdvance) {// go through all closed paths4260 for (; ListRunner != ListOfClosedPaths->end(); ListRunner = ListAdvance) { // go through all closed paths 3974 4261 if (ListAdvance != ListOfClosedPaths->end()) 3975 4262 ListAdvance++; 3976 4263 3977 4264 connectedPath = *ListRunner; 3978 3979 4265 // re-create all triangles by going through connected points list 3980 4266 LineList NewLines; 3981 for (; !connectedPath->empty();) {4267 for (; !connectedPath->empty();) { 3982 4268 // search middle node with widest angle to next neighbours 3983 4269 EndNode = connectedPath->end(); 3984 4270 smallestangle = 0.; 3985 4271 for (MiddleNode = connectedPath->begin(); MiddleNode != connectedPath->end(); MiddleNode++) { 3986 Log() << Verbose(1) << "INFO: MiddleNode is " << **MiddleNode << "." << endl;4272 DoLog(1) && (Log() << Verbose(1) << "INFO: MiddleNode is " << **MiddleNode << "." << endl); 3987 4273 // construct vectors to next and previous neighbour 3988 4274 StartNode = MiddleNode; … … 3991 4277 StartNode--; 3992 4278 //Log() << Verbose(3) << "INFO: StartNode is " << **StartNode << "." << endl; 3993 Point.CopyVector((*StartNode)->node); 3994 Point.SubtractVector((*MiddleNode)->node); 4279 Point = (*(*StartNode)->node) - (*(*MiddleNode)->node); 3995 4280 StartNode = MiddleNode; 3996 4281 StartNode++; … … 3998 4283 StartNode = connectedPath->begin(); 3999 4284 //Log() << Verbose(3) << "INFO: EndNode is " << **StartNode << "." << endl; 4000 Reference.CopyVector((*StartNode)->node); 4001 Reference.SubtractVector((*MiddleNode)->node); 4002 OrthogonalVector.CopyVector((*MiddleNode)->node); 4003 OrthogonalVector.SubtractVector(&OldPoint); 4004 OrthogonalVector.MakeNormalVector(&Reference); 4285 Reference = (*(*StartNode)->node) - (*(*MiddleNode)->node); 4286 OrthogonalVector = (*(*MiddleNode)->node) - OldPoint; 4287 OrthogonalVector.MakeNormalTo(Reference); 4005 4288 angle = GetAngle(Point, Reference, OrthogonalVector); 4006 4289 //if (angle < M_PI) // no wrong-sided triangles, please? 4007 if(fabs(angle - M_PI) < fabs(smallestangle - M_PI)) {// get straightest angle (i.e. construct those triangles with smallest area first)4008 smallestangle = angle;4009 EndNode = MiddleNode;4010 }4290 if (fabs(angle - M_PI) < fabs(smallestangle - M_PI)) { // get straightest angle (i.e. construct those triangles with smallest area first) 4291 smallestangle = angle; 4292 EndNode = MiddleNode; 4293 } 4011 4294 } 4012 4295 MiddleNode = EndNode; 4013 4296 if (MiddleNode == connectedPath->end()) { 4014 eLog() << Verbose(0) << "CRITICAL: Could not find a smallest angle!" << endl;4297 DoeLog(0) && (eLog() << Verbose(0) << "CRITICAL: Could not find a smallest angle!" << endl); 4015 4298 performCriticalExit(); 4016 4299 } … … 4022 4305 if (EndNode == connectedPath->end()) 4023 4306 EndNode = connectedPath->begin(); 4024 Log() << Verbose(2) << "INFO: StartNode is " << **StartNode << "." << endl;4025 Log() << Verbose(2) << "INFO: MiddleNode is " << **MiddleNode << "." << endl;4026 Log() << Verbose(2) << "INFO: EndNode is " << **EndNode << "." << endl;4027 Log() << Verbose(1) << "INFO: Attempting to create triangle " << (*StartNode)->Name << ", " << (*MiddleNode)->Name << " and " << (*EndNode)->Name << "." << endl;4307 DoLog(2) && (Log() << Verbose(2) << "INFO: StartNode is " << **StartNode << "." << endl); 4308 DoLog(2) && (Log() << Verbose(2) << "INFO: MiddleNode is " << **MiddleNode << "." << endl); 4309 DoLog(2) && (Log() << Verbose(2) << "INFO: EndNode is " << **EndNode << "." << endl); 4310 DoLog(1) && (Log() << Verbose(1) << "INFO: Attempting to create triangle " << (*StartNode)->getName() << ", " << (*MiddleNode)->getName() << " and " << (*EndNode)->getName() << "." << endl); 4028 4311 TriangleCandidates[0] = *StartNode; 4029 4312 TriangleCandidates[1] = *MiddleNode; … … 4031 4314 triangle = GetPresentTriangle(TriangleCandidates); 4032 4315 if (triangle != NULL) { 4033 eLog() << Verbose(0) << "New triangle already present, skipping!" << endl;4316 DoeLog(0) && (eLog() << Verbose(0) << "New triangle already present, skipping!" << endl); 4034 4317 StartNode++; 4035 4318 MiddleNode++; … … 4043 4326 continue; 4044 4327 } 4045 Log() << Verbose(3) << "Adding new triangle points."<< endl;4328 DoLog(3) && (Log() << Verbose(3) << "Adding new triangle points." << endl); 4046 4329 AddTesselationPoint(*StartNode, 0); 4047 4330 AddTesselationPoint(*MiddleNode, 1); 4048 4331 AddTesselationPoint(*EndNode, 2); 4049 Log() << Verbose(3) << "Adding new triangle lines."<< endl;4050 AddTesselationLine( TPS[0], TPS[1], 0);4051 AddTesselationLine( TPS[0], TPS[2], 1);4332 DoLog(3) && (Log() << Verbose(3) << "Adding new triangle lines." << endl); 4333 AddTesselationLine(NULL, NULL, TPS[0], TPS[1], 0); 4334 AddTesselationLine(NULL, NULL, TPS[0], TPS[2], 1); 4052 4335 NewLines.push_back(BLS[1]); 4053 AddTesselationLine( TPS[1], TPS[2], 2);4336 AddTesselationLine(NULL, NULL, TPS[1], TPS[2], 2); 4054 4337 BTS = new class BoundaryTriangleSet(BLS, TrianglesOnBoundaryCount); 4055 4338 BTS->GetNormalVector(NormalVector); … … 4062 4345 // prepare nodes for next triangle 4063 4346 StartNode = EndNode; 4064 Log() << Verbose(2) << "Removing " << **MiddleNode << " from closed path, remaining points: " << connectedPath->size() << "." << endl;4347 DoLog(2) && (Log() << Verbose(2) << "Removing " << **MiddleNode << " from closed path, remaining points: " << connectedPath->size() << "." << endl); 4065 4348 connectedPath->remove(*MiddleNode); // remove the middle node (it is surrounded by triangles) 4066 4349 if (connectedPath->size() == 2) { // we are done … … 4069 4352 break; 4070 4353 } else if (connectedPath->size() < 2) { // something's gone wrong! 4071 eLog() << Verbose(0) << "CRITICAL: There are only two endpoints left!" << endl;4354 DoeLog(0) && (eLog() << Verbose(0) << "CRITICAL: There are only two endpoints left!" << endl); 4072 4355 performCriticalExit(); 4073 4356 } else { … … 4089 4372 do { 4090 4373 maxgain = 0; 4091 for (LineList::iterator Runner = NewLines.begin(); Runner != NewLines.end(); Runner++) {4374 for (LineList::iterator Runner = NewLines.begin(); Runner != NewLines.end(); Runner++) { 4092 4375 tmp = PickFarthestofTwoBaselines(*Runner); 4093 4376 if (maxgain < tmp) { … … 4098 4381 if (maxgain != 0) { 4099 4382 volume += maxgain; 4100 Log() << Verbose(1) << "Flipping baseline with highest volume" << **Candidate << "." << endl;4383 DoLog(1) && (Log() << Verbose(1) << "Flipping baseline with highest volume" << **Candidate << "." << endl); 4101 4384 OtherBase = FlipBaseline(*Candidate); 4102 4385 NewLines.erase(Candidate); … … 4107 4390 4108 4391 ListOfClosedPaths->remove(connectedPath); 4109 delete (connectedPath);4110 } 4111 Log() << Verbose(0) << count << " triangles were created." << endl;4392 delete (connectedPath); 4393 } 4394 DoLog(0) && (Log() << Verbose(0) << count << " triangles were created." << endl); 4112 4395 } else { 4113 4396 while (!ListOfClosedPaths->empty()) { … … 4115 4398 connectedPath = *ListRunner; 4116 4399 ListOfClosedPaths->remove(connectedPath); 4117 delete (connectedPath);4118 } 4119 Log() << Verbose(0) << "No need to create any triangles." << endl;4120 } 4121 delete (ListOfClosedPaths);4122 4123 Log() << Verbose(0) << "Removed volume is " << volume << "." << endl;4400 delete (connectedPath); 4401 } 4402 DoLog(0) && (Log() << Verbose(0) << "No need to create any triangles." << endl); 4403 } 4404 delete (ListOfClosedPaths); 4405 4406 DoLog(0) && (Log() << Verbose(0) << "Removed volume is " << volume << "." << endl); 4124 4407 4125 4408 return volume; 4126 }; 4127 4128 4409 } 4410 ; 4129 4411 4130 4412 /** … … 4138 4420 TriangleList *Tesselation::FindTriangles(const TesselPoint* const Points[3]) const 4139 4421 { 4140 Info FunctionInfo(__func__);4141 TriangleList *result = new TriangleList;4422 Info FunctionInfo(__func__); 4423 TriangleList *result = new TriangleList; 4142 4424 LineMap::const_iterator FindLine; 4143 4425 TriangleMap::const_iterator FindTriangle; … … 4163 4445 for (int i = 0; i < 3; i++) { 4164 4446 if (TrianglePoints[i] != NULL) { 4165 for (int j = i +1; j < 3; j++) {4447 for (int j = i + 1; j < 3; j++) { 4166 4448 if (TrianglePoints[j] != NULL) { 4167 4449 for (FindLine = TrianglePoints[i]->lines.find(TrianglePoints[j]->node->nr); // is a multimap! 4168 (FindLine != TrianglePoints[i]->lines.end()) && (FindLine->first == TrianglePoints[j]->node->nr); 4169 FindLine++) { 4170 for (FindTriangle = FindLine->second->triangles.begin(); 4171 FindTriangle != FindLine->second->triangles.end(); 4172 FindTriangle++) { 4450 (FindLine != TrianglePoints[i]->lines.end()) && (FindLine->first == TrianglePoints[j]->node->nr); FindLine++) { 4451 for (FindTriangle = FindLine->second->triangles.begin(); FindTriangle != FindLine->second->triangles.end(); FindTriangle++) { 4173 4452 if (FindTriangle->second->IsPresentTupel(TrianglePoints)) { 4174 4453 result->push_back(FindTriangle->second); … … 4185 4464 case 1: // copy all triangles of the respective line 4186 4465 { 4187 int i =0;4466 int i = 0; 4188 4467 for (; i < 3; i++) 4189 4468 if (TrianglePoints[i] == NULL) 4190 4469 break; 4191 for (FindLine = TrianglePoints[(i+1)%3]->lines.find(TrianglePoints[(i+2)%3]->node->nr); // is a multimap! 4192 (FindLine != TrianglePoints[(i+1)%3]->lines.end()) && (FindLine->first == TrianglePoints[(i+2)%3]->node->nr); 4193 FindLine++) { 4194 for (FindTriangle = FindLine->second->triangles.begin(); 4195 FindTriangle != FindLine->second->triangles.end(); 4196 FindTriangle++) { 4470 for (FindLine = TrianglePoints[(i + 1) % 3]->lines.find(TrianglePoints[(i + 2) % 3]->node->nr); // is a multimap! 4471 (FindLine != TrianglePoints[(i + 1) % 3]->lines.end()) && (FindLine->first == TrianglePoints[(i + 2) % 3]->node->nr); FindLine++) { 4472 for (FindTriangle = FindLine->second->triangles.begin(); FindTriangle != FindLine->second->triangles.end(); FindTriangle++) { 4197 4473 if (FindTriangle->second->IsPresentTupel(TrianglePoints)) { 4198 4474 result->push_back(FindTriangle->second); … … 4204 4480 case 2: // copy all triangles of the respective point 4205 4481 { 4206 int i =0;4482 int i = 0; 4207 4483 for (; i < 3; i++) 4208 4484 if (TrianglePoints[i] != NULL) … … 4222 4498 } 4223 4499 default: 4224 eLog() << Verbose(0) << "Number of wildcards is greater than 3, cannot happen!" << endl;4500 DoeLog(0) && (eLog() << Verbose(0) << "Number of wildcards is greater than 3, cannot happen!" << endl); 4225 4501 performCriticalExit(); 4226 4502 break; … … 4230 4506 } 4231 4507 4232 struct BoundaryLineSetCompare { 4233 bool operator() (const BoundaryLineSet * const a, const BoundaryLineSet * const b) { 4508 struct BoundaryLineSetCompare 4509 { 4510 bool operator()(const BoundaryLineSet * const a, const BoundaryLineSet * const b) 4511 { 4234 4512 int lowerNra = -1; 4235 4513 int lowerNrb = -1; … … 4249 4527 else if (a->endpoints[lowerNra] > b->endpoints[lowerNrb]) 4250 4528 return false; 4251 else { // both lower-numbered endpoints are the same ...4252 if (a->endpoints[(lowerNra+1)%2] < b->endpoints[(lowerNrb+1)%2])4253 return true;4254 else if (a->endpoints[(lowerNra+1)%2] > b->endpoints[(lowerNrb+1)%2])4255 return false;4529 else { // both lower-numbered endpoints are the same ... 4530 if (a->endpoints[(lowerNra + 1) % 2] < b->endpoints[(lowerNrb + 1) % 2]) 4531 return true; 4532 else if (a->endpoints[(lowerNra + 1) % 2] > b->endpoints[(lowerNrb + 1) % 2]) 4533 return false; 4256 4534 } 4257 4535 return false; 4258 }; 4536 } 4537 ; 4259 4538 }; 4260 4539 … … 4269 4548 IndexToIndex * Tesselation::FindAllDegeneratedLines() 4270 4549 { 4271 Info FunctionInfo(__func__);4272 UniqueLines AllLines;4550 Info FunctionInfo(__func__); 4551 UniqueLines AllLines; 4273 4552 IndexToIndex * DegeneratedLines = new IndexToIndex; 4274 4553 4275 4554 // sanity check 4276 4555 if (LinesOnBoundary.empty()) { 4277 eLog() << Verbose(2) << "FindAllDegeneratedTriangles() was called without any tesselation structure.";4556 DoeLog(2) && (eLog() << Verbose(2) << "FindAllDegeneratedTriangles() was called without any tesselation structure."); 4278 4557 return DegeneratedLines; 4279 4558 } 4280 4281 4559 LineMap::iterator LineRunner1; 4282 pair< UniqueLines::iterator, bool> tester;4560 pair<UniqueLines::iterator, bool> tester; 4283 4561 for (LineRunner1 = LinesOnBoundary.begin(); LineRunner1 != LinesOnBoundary.end(); ++LineRunner1) { 4284 tester = AllLines.insert( LineRunner1->second);4562 tester = AllLines.insert(LineRunner1->second); 4285 4563 if (!tester.second) { // found degenerated line 4286 DegeneratedLines->insert ( pair<int, int> (LineRunner1->second->Nr, (*tester.first)->Nr));4287 DegeneratedLines->insert ( pair<int, int> ((*tester.first)->Nr, LineRunner1->second->Nr));4564 DegeneratedLines->insert(pair<int, int> (LineRunner1->second->Nr, (*tester.first)->Nr)); 4565 DegeneratedLines->insert(pair<int, int> ((*tester.first)->Nr, LineRunner1->second->Nr)); 4288 4566 } 4289 4567 } … … 4291 4569 AllLines.clear(); 4292 4570 4293 Log() << Verbose(0) << "FindAllDegeneratedLines() found " << DegeneratedLines->size() << " lines." << endl;4571 DoLog(0) && (Log() << Verbose(0) << "FindAllDegeneratedLines() found " << DegeneratedLines->size() << " lines." << endl); 4294 4572 IndexToIndex::iterator it; 4295 4573 for (it = DegeneratedLines->begin(); it != DegeneratedLines->end(); it++) { … … 4297 4575 const LineMap::const_iterator Line2 = LinesOnBoundary.find((*it).second); 4298 4576 if (Line1 != LinesOnBoundary.end() && Line2 != LinesOnBoundary.end()) 4299 Log() << Verbose(0) << *Line1->second << " => " << *Line2->second << endl;4577 DoLog(0) && (Log() << Verbose(0) << *Line1->second << " => " << *Line2->second << endl); 4300 4578 else 4301 eLog() << Verbose(1) << "Either " << (*it).first << " or " << (*it).second << " are not in LinesOnBoundary!" << endl;4579 DoeLog(1) && (eLog() << Verbose(1) << "Either " << (*it).first << " or " << (*it).second << " are not in LinesOnBoundary!" << endl); 4302 4580 } 4303 4581 … … 4313 4591 IndexToIndex * Tesselation::FindAllDegeneratedTriangles() 4314 4592 { 4315 Info FunctionInfo(__func__);4593 Info FunctionInfo(__func__); 4316 4594 IndexToIndex * DegeneratedLines = FindAllDegeneratedLines(); 4317 4595 IndexToIndex * DegeneratedTriangles = new IndexToIndex; 4318 4319 4596 TriangleMap::iterator TriangleRunner1, TriangleRunner2; 4320 4597 LineMap::iterator Liner; … … 4331 4608 for (TriangleRunner1 = line1->triangles.begin(); TriangleRunner1 != line1->triangles.end(); ++TriangleRunner1) { 4332 4609 for (TriangleRunner2 = line2->triangles.begin(); TriangleRunner2 != line2->triangles.end(); ++TriangleRunner2) { 4333 if ((TriangleRunner1->second != TriangleRunner2->second) 4334 && (TriangleRunner1->second->IsPresentTupel(TriangleRunner2->second))) { 4335 DegeneratedTriangles->insert( pair<int, int> (TriangleRunner1->second->Nr, TriangleRunner2->second->Nr) ); 4336 DegeneratedTriangles->insert( pair<int, int> (TriangleRunner2->second->Nr, TriangleRunner1->second->Nr) ); 4610 if ((TriangleRunner1->second != TriangleRunner2->second) && (TriangleRunner1->second->IsPresentTupel(TriangleRunner2->second))) { 4611 DegeneratedTriangles->insert(pair<int, int> (TriangleRunner1->second->Nr, TriangleRunner2->second->Nr)); 4612 DegeneratedTriangles->insert(pair<int, int> (TriangleRunner2->second->Nr, TriangleRunner1->second->Nr)); 4337 4613 } 4338 4614 } 4339 4615 } 4340 4616 } 4341 delete (DegeneratedLines);4342 4343 Log() << Verbose(0) << "FindAllDegeneratedTriangles() found " << DegeneratedTriangles->size() << " triangles:" << endl;4617 delete (DegeneratedLines); 4618 4619 DoLog(0) && (Log() << Verbose(0) << "FindAllDegeneratedTriangles() found " << DegeneratedTriangles->size() << " triangles:" << endl); 4344 4620 IndexToIndex::iterator it; 4345 4621 for (it = DegeneratedTriangles->begin(); it != DegeneratedTriangles->end(); it++) 4346 Log() << Verbose(0) << (*it).first << " => " << (*it).second << endl;4622 DoLog(0) && (Log() << Verbose(0) << (*it).first << " => " << (*it).second << endl); 4347 4623 4348 4624 return DegeneratedTriangles; … … 4355 4631 void Tesselation::RemoveDegeneratedTriangles() 4356 4632 { 4357 Info FunctionInfo(__func__);4633 Info FunctionInfo(__func__); 4358 4634 IndexToIndex * DegeneratedTriangles = FindAllDegeneratedTriangles(); 4359 4635 TriangleMap::iterator finder; 4360 4636 BoundaryTriangleSet *triangle = NULL, *partnerTriangle = NULL; 4361 int count = 0; 4362 4363 for (IndexToIndex::iterator TriangleKeyRunner = DegeneratedTriangles->begin(); 4364 TriangleKeyRunner != DegeneratedTriangles->end(); ++TriangleKeyRunner 4365 ) { 4637 int count = 0; 4638 4639 for (IndexToIndex::iterator TriangleKeyRunner = DegeneratedTriangles->begin(); TriangleKeyRunner != DegeneratedTriangles->end(); ++TriangleKeyRunner) { 4366 4640 finder = TrianglesOnBoundary.find(TriangleKeyRunner->first); 4367 4641 if (finder != TrianglesOnBoundary.end()) … … 4380 4654 trianglesShareLine = trianglesShareLine || triangle->lines[i] == partnerTriangle->lines[j]; 4381 4655 4382 if (trianglesShareLine 4383 && (triangle->endpoints[1]->LinesCount > 2) 4384 && (triangle->endpoints[2]->LinesCount > 2) 4385 && (triangle->endpoints[0]->LinesCount > 2) 4386 ) { 4656 if (trianglesShareLine && (triangle->endpoints[1]->LinesCount > 2) && (triangle->endpoints[2]->LinesCount > 2) && (triangle->endpoints[0]->LinesCount > 2)) { 4387 4657 // check whether we have to fix lines 4388 4658 BoundaryTriangleSet *Othertriangle = NULL; … … 4404 4674 // the line of triangle receives the degenerated ones 4405 4675 triangle->lines[i]->triangles.erase(Othertriangle->Nr); 4406 triangle->lines[i]->triangles.insert( TrianglePair( partnerTriangle->Nr, partnerTriangle));4407 for (int k =0;k<3;k++)4676 triangle->lines[i]->triangles.insert(TrianglePair(partnerTriangle->Nr, partnerTriangle)); 4677 for (int k = 0; k < 3; k++) 4408 4678 if (triangle->lines[i] == Othertriangle->lines[k]) { 4409 4679 Othertriangle->lines[k] = partnerTriangle->lines[j]; … … 4411 4681 } 4412 4682 // the line of partnerTriangle receives the non-degenerated ones 4413 partnerTriangle->lines[j]->triangles.erase( partnerTriangle->Nr);4414 partnerTriangle->lines[j]->triangles.insert( TrianglePair( Othertriangle->Nr, Othertriangle));4683 partnerTriangle->lines[j]->triangles.erase(partnerTriangle->Nr); 4684 partnerTriangle->lines[j]->triangles.insert(TrianglePair(Othertriangle->Nr, Othertriangle)); 4415 4685 partnerTriangle->lines[j] = triangle->lines[i]; 4416 4686 } … … 4418 4688 // erase the pair 4419 4689 count += (int) DegeneratedTriangles->erase(triangle->Nr); 4420 Log() << Verbose(0) << "RemoveDegeneratedTriangles() removes triangle " << *triangle << "." << endl;4690 DoLog(0) && (Log() << Verbose(0) << "RemoveDegeneratedTriangles() removes triangle " << *triangle << "." << endl); 4421 4691 RemoveTesselationTriangle(triangle); 4422 4692 count += (int) DegeneratedTriangles->erase(partnerTriangle->Nr); 4423 Log() << Verbose(0) << "RemoveDegeneratedTriangles() removes triangle " << *partnerTriangle << "." << endl;4693 DoLog(0) && (Log() << Verbose(0) << "RemoveDegeneratedTriangles() removes triangle " << *partnerTriangle << "." << endl); 4424 4694 RemoveTesselationTriangle(partnerTriangle); 4425 4695 } else { 4426 Log() << Verbose(0) << "RemoveDegeneratedTriangles() does not remove triangle " << *triangle 4427 << " and its partner " << *partnerTriangle << " because it is essential for at" 4428 << " least one of the endpoints to be kept in the tesselation structure." << endl; 4429 } 4430 } 4431 delete(DegeneratedTriangles); 4696 DoLog(0) && (Log() << Verbose(0) << "RemoveDegeneratedTriangles() does not remove triangle " << *triangle << " and its partner " << *partnerTriangle << " because it is essential for at" << " least one of the endpoints to be kept in the tesselation structure." << endl); 4697 } 4698 } 4699 delete (DegeneratedTriangles); 4432 4700 if (count > 0) 4433 4701 LastTriangle = NULL; 4434 4702 4435 Log() << Verbose(0) << "RemoveDegeneratedTriangles() removed " << count << " triangles:" << endl;4703 DoLog(0) && (Log() << Verbose(0) << "RemoveDegeneratedTriangles() removed " << count << " triangles:" << endl); 4436 4704 } 4437 4705 … … 4446 4714 void Tesselation::AddBoundaryPointByDegeneratedTriangle(class TesselPoint *point, LinkedCell *LC) 4447 4715 { 4448 Info FunctionInfo(__func__);4716 Info FunctionInfo(__func__); 4449 4717 // find nearest boundary point 4450 4718 class TesselPoint *BackupPoint = NULL; … … 4459 4727 NearestBoundaryPoint = PointRunner->second; 4460 4728 } else { 4461 eLog() << Verbose(1) << "I cannot find the boundary point." << endl;4729 DoeLog(1) && (eLog() << Verbose(1) << "I cannot find the boundary point." << endl); 4462 4730 return; 4463 4731 } 4464 Log() << Verbose(0) << "Nearest point on boundary is " << NearestPoint->Name << "." << endl;4732 DoLog(0) && (Log() << Verbose(0) << "Nearest point on boundary is " << NearestPoint->getName() << "." << endl); 4465 4733 4466 4734 // go through its lines and find the best one to split … … 4470 4738 class BoundaryLineSet *BestLine = NULL; 4471 4739 for (LineMap::iterator Runner = NearestBoundaryPoint->lines.begin(); Runner != NearestBoundaryPoint->lines.end(); Runner++) { 4472 BaseLine.CopyVector(Runner->second->endpoints[0]->node->node); 4473 BaseLine.SubtractVector(Runner->second->endpoints[1]->node->node); 4474 CenterToPoint.CopyVector(Runner->second->endpoints[0]->node->node); 4475 CenterToPoint.AddVector(Runner->second->endpoints[1]->node->node); 4476 CenterToPoint.Scale(0.5); 4477 CenterToPoint.SubtractVector(point->node); 4478 angle = CenterToPoint.Angle(&BaseLine); 4740 BaseLine = (*Runner->second->endpoints[0]->node->node) - 4741 (*Runner->second->endpoints[1]->node->node); 4742 CenterToPoint = 0.5 * ((*Runner->second->endpoints[0]->node->node) + 4743 (*Runner->second->endpoints[1]->node->node)); 4744 CenterToPoint -= (*point->node); 4745 angle = CenterToPoint.Angle(BaseLine); 4479 4746 if (fabs(angle - M_PI/2.) < fabs(BestAngle - M_PI/2.)) { 4480 4747 BestAngle = angle; … … 4487 4754 BestLine->triangles.erase(TempTriangle->Nr); 4488 4755 int nr = -1; 4489 for (int i =0;i<3; i++) {4756 for (int i = 0; i < 3; i++) { 4490 4757 if (TempTriangle->lines[i] == BestLine) { 4491 4758 nr = i; … … 4495 4762 4496 4763 // create new triangle to connect point (connects automatically with the missing spot of the chosen line) 4497 Log() << Verbose(2) << "Adding new triangle points."<< endl;4764 DoLog(2) && (Log() << Verbose(2) << "Adding new triangle points." << endl); 4498 4765 AddTesselationPoint((BestLine->endpoints[0]->node), 0); 4499 4766 AddTesselationPoint((BestLine->endpoints[1]->node), 1); 4500 4767 AddTesselationPoint(point, 2); 4501 Log() << Verbose(2) << "Adding new triangle lines."<< endl;4502 AddTesselationLine( TPS[0], TPS[1], 0);4503 AddTesselationLine( TPS[0], TPS[2], 1);4504 AddTesselationLine( TPS[1], TPS[2], 2);4768 DoLog(2) && (Log() << Verbose(2) << "Adding new triangle lines." << endl); 4769 AddTesselationLine(NULL, NULL, TPS[0], TPS[1], 0); 4770 AddTesselationLine(NULL, NULL, TPS[0], TPS[2], 1); 4771 AddTesselationLine(NULL, NULL, TPS[1], TPS[2], 2); 4505 4772 BTS = new class BoundaryTriangleSet(BLS, TrianglesOnBoundaryCount); 4506 4773 BTS->GetNormalVector(TempTriangle->NormalVector); 4507 4774 BTS->NormalVector.Scale(-1.); 4508 Log() << Verbose(1) << "INFO: NormalVector of new triangle is " << BTS->NormalVector << "." << endl;4775 DoLog(1) && (Log() << Verbose(1) << "INFO: NormalVector of new triangle is " << BTS->NormalVector << "." << endl); 4509 4776 AddTesselationTriangle(); 4510 4777 4511 4778 // create other side of this triangle and close both new sides of the first created triangle 4512 Log() << Verbose(2) << "Adding new triangle points."<< endl;4779 DoLog(2) && (Log() << Verbose(2) << "Adding new triangle points." << endl); 4513 4780 AddTesselationPoint((BestLine->endpoints[0]->node), 0); 4514 4781 AddTesselationPoint((BestLine->endpoints[1]->node), 1); 4515 4782 AddTesselationPoint(point, 2); 4516 Log() << Verbose(2) << "Adding new triangle lines."<< endl;4517 AddTesselationLine( TPS[0], TPS[1], 0);4518 AddTesselationLine( TPS[0], TPS[2], 1);4519 AddTesselationLine( TPS[1], TPS[2], 2);4783 DoLog(2) && (Log() << Verbose(2) << "Adding new triangle lines." << endl); 4784 AddTesselationLine(NULL, NULL, TPS[0], TPS[1], 0); 4785 AddTesselationLine(NULL, NULL, TPS[0], TPS[2], 1); 4786 AddTesselationLine(NULL, NULL, TPS[1], TPS[2], 2); 4520 4787 BTS = new class BoundaryTriangleSet(BLS, TrianglesOnBoundaryCount); 4521 4788 BTS->GetNormalVector(TempTriangle->NormalVector); 4522 Log() << Verbose(1) << "INFO: NormalVector of other new triangle is " << BTS->NormalVector << "." << endl;4789 DoLog(1) && (Log() << Verbose(1) << "INFO: NormalVector of other new triangle is " << BTS->NormalVector << "." << endl); 4523 4790 AddTesselationTriangle(); 4524 4791 4525 4792 // add removed triangle to the last open line of the second triangle 4526 for (int i =0;i<3;i++) { // look for the same line as BestLine (only it's its degenerated companion)4793 for (int i = 0; i < 3; i++) { // look for the same line as BestLine (only it's its degenerated companion) 4527 4794 if ((BTS->lines[i]->ContainsBoundaryPoint(BestLine->endpoints[0])) && (BTS->lines[i]->ContainsBoundaryPoint(BestLine->endpoints[1]))) { 4528 if (BestLine == BTS->lines[i]) {4529 eLog() << Verbose(0) << "BestLine is same as found line, something's wrong here!" << endl;4795 if (BestLine == BTS->lines[i]) { 4796 DoeLog(0) && (eLog() << Verbose(0) << "BestLine is same as found line, something's wrong here!" << endl); 4530 4797 performCriticalExit(); 4531 4798 } 4532 BTS->lines[i]->triangles.insert( pair<int, class BoundaryTriangleSet *> (TempTriangle->Nr, TempTriangle));4799 BTS->lines[i]->triangles.insert(pair<int, class BoundaryTriangleSet *> (TempTriangle->Nr, TempTriangle)); 4533 4800 TempTriangle->lines[nr] = BTS->lines[i]; 4534 4801 break; 4535 4802 } 4536 4803 } 4537 }; 4804 } 4805 ; 4538 4806 4539 4807 /** Writes the envelope to file. … … 4544 4812 void Tesselation::Output(const char *filename, const PointCloud * const cloud) 4545 4813 { 4546 Info FunctionInfo(__func__);4814 Info FunctionInfo(__func__); 4547 4815 ofstream *tempstream = NULL; 4548 4816 string NameofTempFile; 4549 char NumberName[255];4817 string NumberName; 4550 4818 4551 4819 if (LastTriangle != NULL) { 4552 sprintf(NumberName, "-%04d-%s_%s_%s", (int)TrianglesOnBoundary.size(), LastTriangle->endpoints[0]->node->Name, LastTriangle->endpoints[1]->node->Name, LastTriangle->endpoints[2]->node->Name); 4820 stringstream sstr; 4821 sstr << "-"<< TrianglesOnBoundary.size() << "-" << LastTriangle->getEndpointName(0) << "_" << LastTriangle->getEndpointName(1) << "_" << LastTriangle->getEndpointName(2); 4822 NumberName = sstr.str(); 4553 4823 if (DoTecplotOutput) { 4554 4824 string NameofTempFile(filename); 4555 4825 NameofTempFile.append(NumberName); 4556 for (size_t npos = NameofTempFile.find_first_of(' '); npos != string::npos; npos = NameofTempFile.find(' ', npos))4557 NameofTempFile.erase(npos, 1);4826 for (size_t npos = NameofTempFile.find_first_of(' '); npos != string::npos; npos = NameofTempFile.find(' ', npos)) 4827 NameofTempFile.erase(npos, 1); 4558 4828 NameofTempFile.append(TecplotSuffix); 4559 Log() << Verbose(0) << "Writing temporary non convex hull to file " << NameofTempFile << ".\n";4829 DoLog(0) && (Log() << Verbose(0) << "Writing temporary non convex hull to file " << NameofTempFile << ".\n"); 4560 4830 tempstream = new ofstream(NameofTempFile.c_str(), ios::trunc); 4561 4831 WriteTecplotFile(tempstream, this, cloud, TriangleFilesWritten); 4562 4832 tempstream->close(); 4563 4833 tempstream->flush(); 4564 delete (tempstream);4834 delete (tempstream); 4565 4835 } 4566 4836 … … 4568 4838 string NameofTempFile(filename); 4569 4839 NameofTempFile.append(NumberName); 4570 for (size_t npos = NameofTempFile.find_first_of(' '); npos != string::npos; npos = NameofTempFile.find(' ', npos))4571 NameofTempFile.erase(npos, 1);4840 for (size_t npos = NameofTempFile.find_first_of(' '); npos != string::npos; npos = NameofTempFile.find(' ', npos)) 4841 NameofTempFile.erase(npos, 1); 4572 4842 NameofTempFile.append(Raster3DSuffix); 4573 Log() << Verbose(0) << "Writing temporary non convex hull to file " << NameofTempFile << ".\n";4843 DoLog(0) && (Log() << Verbose(0) << "Writing temporary non convex hull to file " << NameofTempFile << ".\n"); 4574 4844 tempstream = new ofstream(NameofTempFile.c_str(), ios::trunc); 4575 4845 WriteRaster3dFile(tempstream, this, cloud); … … 4577 4847 tempstream->close(); 4578 4848 tempstream->flush(); 4579 delete (tempstream);4849 delete (tempstream); 4580 4850 } 4581 4851 } 4582 4852 if (DoTecplotOutput || DoRaster3DOutput) 4583 4853 TriangleFilesWritten++; 4584 }; 4585 4586 struct BoundaryPolygonSetCompare { 4587 bool operator()(const BoundaryPolygonSet * s1, const BoundaryPolygonSet * s2) const { 4854 } 4855 ; 4856 4857 struct BoundaryPolygonSetCompare 4858 { 4859 bool operator()(const BoundaryPolygonSet * s1, const BoundaryPolygonSet * s2) const 4860 { 4588 4861 if (s1->endpoints.size() < s2->endpoints.size()) 4589 4862 return true; … … 4614 4887 { 4615 4888 Info FunctionInfo(__func__); 4616 4617 4889 /// 2. Go through all BoundaryPointSet's, check their triangles' NormalVector 4618 4890 IndexToIndex *DegeneratedTriangles = FindAllDegeneratedTriangles(); 4619 set <BoundaryPointSet *> EndpointCandidateList;4620 pair < set < BoundaryPointSet *>::iterator, bool> InsertionTester;4621 pair < map < int, Vector *>::iterator, bool> TriangleInsertionTester;4891 set<BoundaryPointSet *> EndpointCandidateList; 4892 pair<set<BoundaryPointSet *>::iterator, bool> InsertionTester; 4893 pair<map<int, Vector *>::iterator, bool> TriangleInsertionTester; 4622 4894 for (PointMap::const_iterator Runner = PointsOnBoundary.begin(); Runner != PointsOnBoundary.end(); Runner++) { 4623 Log() << Verbose(0) << "Current point is " << *Runner->second << "." << endl;4624 map <int, Vector *> TriangleVectors;4895 DoLog(0) && (Log() << Verbose(0) << "Current point is " << *Runner->second << "." << endl); 4896 map<int, Vector *> TriangleVectors; 4625 4897 // gather all NormalVectors 4626 Log() << Verbose(1) << "Gathering triangles ..." << endl;4898 DoLog(1) && (Log() << Verbose(1) << "Gathering triangles ..." << endl); 4627 4899 for (LineMap::const_iterator LineRunner = (Runner->second)->lines.begin(); LineRunner != (Runner->second)->lines.end(); LineRunner++) 4628 4900 for (TriangleMap::const_iterator TriangleRunner = (LineRunner->second)->triangles.begin(); TriangleRunner != (LineRunner->second)->triangles.end(); TriangleRunner++) { 4629 4901 if (DegeneratedTriangles->find(TriangleRunner->second->Nr) == DegeneratedTriangles->end()) { 4630 TriangleInsertionTester = TriangleVectors.insert( pair< int, Vector *> ((TriangleRunner->second)->Nr, &((TriangleRunner->second)->NormalVector)));4902 TriangleInsertionTester = TriangleVectors.insert(pair<int, Vector *> ((TriangleRunner->second)->Nr, &((TriangleRunner->second)->NormalVector))); 4631 4903 if (TriangleInsertionTester.second) 4632 Log() << Verbose(1) << " Adding triangle " << *(TriangleRunner->second) << " to triangles to check-list." << endl;4904 DoLog(1) && (Log() << Verbose(1) << " Adding triangle " << *(TriangleRunner->second) << " to triangles to check-list." << endl); 4633 4905 } else { 4634 Log() << Verbose(1) << " NOT adding triangle " << *(TriangleRunner->second) << " as it's a simply degenerated one." << endl;4906 DoLog(1) && (Log() << Verbose(1) << " NOT adding triangle " << *(TriangleRunner->second) << " as it's a simply degenerated one." << endl); 4635 4907 } 4636 4908 } 4637 4909 // check whether there are two that are parallel 4638 Log() << Verbose(1) << "Finding two parallel triangles ..." << endl;4639 for (map <int, Vector *>::iterator VectorWalker = TriangleVectors.begin(); VectorWalker != TriangleVectors.end(); VectorWalker++)4640 for (map <int, Vector *>::iterator VectorRunner = VectorWalker; VectorRunner != TriangleVectors.end(); VectorRunner++)4910 DoLog(1) && (Log() << Verbose(1) << "Finding two parallel triangles ..." << endl); 4911 for (map<int, Vector *>::iterator VectorWalker = TriangleVectors.begin(); VectorWalker != TriangleVectors.end(); VectorWalker++) 4912 for (map<int, Vector *>::iterator VectorRunner = VectorWalker; VectorRunner != TriangleVectors.end(); VectorRunner++) 4641 4913 if (VectorWalker != VectorRunner) { // skip equals 4642 const double SCP = VectorWalker->second->ScalarProduct( VectorRunner->second);// ScalarProduct should result in -1. for degenerated triangles4643 Log() << Verbose(1) << "Checking " << *VectorWalker->second<< " against " << *VectorRunner->second << ": " << SCP << endl;4914 const double SCP = VectorWalker->second->ScalarProduct(*VectorRunner->second); // ScalarProduct should result in -1. for degenerated triangles 4915 DoLog(1) && (Log() << Verbose(1) << "Checking " << *VectorWalker->second << " against " << *VectorRunner->second << ": " << SCP << endl); 4644 4916 if (fabs(SCP + 1.) < ParallelEpsilon) { 4645 4917 InsertionTester = EndpointCandidateList.insert((Runner->second)); 4646 4918 if (InsertionTester.second) 4647 Log() << Verbose(0) << " Adding " << *Runner->second << " to endpoint candidate list." << endl;4919 DoLog(0) && (Log() << Verbose(0) << " Adding " << *Runner->second << " to endpoint candidate list." << endl); 4648 4920 // and break out of both loops 4649 4921 VectorWalker = TriangleVectors.end(); … … 4660 4932 BoundaryPointSet *OtherWalker = NULL; 4661 4933 BoundaryPolygonSet *Current = NULL; 4662 stack <BoundaryPointSet*> ToCheckConnecteds;4934 stack<BoundaryPointSet*> ToCheckConnecteds; 4663 4935 while (!EndpointCandidateList.empty()) { 4664 4936 Walker = *(EndpointCandidateList.begin()); 4665 if (Current == NULL) { // create a new polygon with current candidate4666 Log() << Verbose(0) << "Starting new polygon set at point " << *Walker << endl;4937 if (Current == NULL) { // create a new polygon with current candidate 4938 DoLog(0) && (Log() << Verbose(0) << "Starting new polygon set at point " << *Walker << endl); 4667 4939 Current = new BoundaryPolygonSet; 4668 4940 Current->endpoints.insert(Walker); … … 4677 4949 for (LineMap::const_iterator LineWalker = Walker->lines.begin(); LineWalker != Walker->lines.end(); LineWalker++) { 4678 4950 OtherWalker = (LineWalker->second)->GetOtherEndpoint(Walker); 4679 Log() << Verbose(1) << "Checking " << *OtherWalker << endl;4680 set <BoundaryPointSet *>::iterator Finder = EndpointCandidateList.find(OtherWalker);4681 if (Finder != EndpointCandidateList.end()) { // found a connected partner4682 Log() << Verbose(1) << " Adding to polygon." << endl;4951 DoLog(1) && (Log() << Verbose(1) << "Checking " << *OtherWalker << endl); 4952 set<BoundaryPointSet *>::iterator Finder = EndpointCandidateList.find(OtherWalker); 4953 if (Finder != EndpointCandidateList.end()) { // found a connected partner 4954 DoLog(1) && (Log() << Verbose(1) << " Adding to polygon." << endl); 4683 4955 Current->endpoints.insert(OtherWalker); 4684 EndpointCandidateList.erase(Finder); // remove from candidates4685 ToCheckConnecteds.push(OtherWalker); // but check its partners too4956 EndpointCandidateList.erase(Finder); // remove from candidates 4957 ToCheckConnecteds.push(OtherWalker); // but check its partners too 4686 4958 } else { 4687 Log() << Verbose(1) << " is not connected to " << *Walker << endl;4959 DoLog(1) && (Log() << Verbose(1) << " is not connected to " << *Walker << endl); 4688 4960 } 4689 4961 } 4690 4962 } 4691 4963 4692 Log() << Verbose(0) << "Final polygon is " << *Current << endl;4964 DoLog(0) && (Log() << Verbose(0) << "Final polygon is " << *Current << endl); 4693 4965 ListofDegeneratedPolygons.insert(Current); 4694 4966 Current = NULL; … … 4697 4969 const int counter = ListofDegeneratedPolygons.size(); 4698 4970 4699 Log() << Verbose(0) << "The following " << counter << " degenerated polygons have been found: " << endl;4971 DoLog(0) && (Log() << Verbose(0) << "The following " << counter << " degenerated polygons have been found: " << endl); 4700 4972 for (UniquePolygonSet::iterator PolygonRunner = ListofDegeneratedPolygons.begin(); PolygonRunner != ListofDegeneratedPolygons.end(); PolygonRunner++) 4701 Log() << Verbose(0) << " " << **PolygonRunner << endl;4973 DoLog(0) && (Log() << Verbose(0) << " " << **PolygonRunner << endl); 4702 4974 4703 4975 /// 4. Go through all these degenerated polygons 4704 4976 for (UniquePolygonSet::iterator PolygonRunner = ListofDegeneratedPolygons.begin(); PolygonRunner != ListofDegeneratedPolygons.end(); PolygonRunner++) { 4705 stack <int> TriangleNrs;4977 stack<int> TriangleNrs; 4706 4978 Vector NormalVector; 4707 4979 /// 4a. Gather all triangles of this polygon … … 4710 4982 // check whether number is bigger than 2, otherwise it's just a simply degenerated one and nothing to do. 4711 4983 if (T->size() == 2) { 4712 Log() << Verbose(1) << " Skipping degenerated polygon, is just a (already simply degenerated) triangle." << endl;4713 delete (T);4984 DoLog(1) && (Log() << Verbose(1) << " Skipping degenerated polygon, is just a (already simply degenerated) triangle." << endl); 4985 delete (T); 4714 4986 continue; 4715 4987 } … … 4720 4992 // connections to either polygon ... 4721 4993 if (T->size() % 2 != 0) { 4722 eLog() << Verbose(0) << " degenerated polygon contains an odd number of triangles, probably contains bridging non-degenerated ones, too!" << endl;4994 DoeLog(0) && (eLog() << Verbose(0) << " degenerated polygon contains an odd number of triangles, probably contains bridging non-degenerated ones, too!" << endl); 4723 4995 performCriticalExit(); 4724 4996 } 4725 4726 TriangleSet::iterator TriangleWalker = T->begin(); // is the inner iterator 4997 TriangleSet::iterator TriangleWalker = T->begin(); // is the inner iterator 4727 4998 /// 4a. Get NormalVector for one side (this is "front") 4728 NormalVector .CopyVector(&(*TriangleWalker)->NormalVector);4729 Log() << Verbose(1) << "\"front\" defining triangle is " << **TriangleWalker << " and Normal vector of \"front\" side is " << NormalVector << endl;4999 NormalVector = (*TriangleWalker)->NormalVector; 5000 DoLog(1) && (Log() << Verbose(1) << "\"front\" defining triangle is " << **TriangleWalker << " and Normal vector of \"front\" side is " << NormalVector << endl); 4730 5001 TriangleWalker++; 4731 5002 TriangleSet::iterator TriangleSprinter = TriangleWalker; // is the inner advanced iterator … … 4736 5007 triangle = *TriangleWalker; 4737 5008 TriangleSprinter++; 4738 Log() << Verbose(1) << "Current triangle to test for removal: " << *triangle << endl;4739 if (triangle->NormalVector.ScalarProduct( &NormalVector) < 0) { // if from other side, then delete and remove from list4740 Log() << Verbose(1) << " Removing ... " << endl;5009 DoLog(1) && (Log() << Verbose(1) << "Current triangle to test for removal: " << *triangle << endl); 5010 if (triangle->NormalVector.ScalarProduct(NormalVector) < 0) { // if from other side, then delete and remove from list 5011 DoLog(1) && (Log() << Verbose(1) << " Removing ... " << endl); 4741 5012 TriangleNrs.push(triangle->Nr); 4742 5013 T->erase(TriangleWalker); 4743 5014 RemoveTesselationTriangle(triangle); 4744 5015 } else 4745 Log() << Verbose(1) << " Keeping ... " << endl;5016 DoLog(1) && (Log() << Verbose(1) << " Keeping ... " << endl); 4746 5017 } 4747 5018 /// 4c. Copy all "front" triangles but with inverse NormalVector 4748 5019 TriangleWalker = T->begin(); 4749 while (TriangleWalker != T->end()) { // go through all front triangles4750 Log() << Verbose(1) << " Re-creating triangle " << **TriangleWalker << " with NormalVector " << (*TriangleWalker)->NormalVector << endl;5020 while (TriangleWalker != T->end()) { // go through all front triangles 5021 DoLog(1) && (Log() << Verbose(1) << " Re-creating triangle " << **TriangleWalker << " with NormalVector " << (*TriangleWalker)->NormalVector << endl); 4751 5022 for (int i = 0; i < 3; i++) 4752 5023 AddTesselationPoint((*TriangleWalker)->endpoints[i]->node, i); 4753 AddTesselationLine( TPS[0], TPS[1], 0);4754 AddTesselationLine( TPS[0], TPS[2], 1);4755 AddTesselationLine( TPS[1], TPS[2], 2);5024 AddTesselationLine(NULL, NULL, TPS[0], TPS[1], 0); 5025 AddTesselationLine(NULL, NULL, TPS[0], TPS[2], 1); 5026 AddTesselationLine(NULL, NULL, TPS[1], TPS[2], 2); 4756 5027 if (TriangleNrs.empty()) 4757 eLog() << Verbose(0) << "No more free triangle numbers!" << endl;5028 DoeLog(0) && (eLog() << Verbose(0) << "No more free triangle numbers!" << endl); 4758 5029 BTS = new BoundaryTriangleSet(BLS, TriangleNrs.top()); // copy triangle ... 4759 5030 AddTesselationTriangle(); // ... and add 4760 5031 TriangleNrs.pop(); 4761 BTS->NormalVector.CopyVector(&(*TriangleWalker)->NormalVector); 4762 BTS->NormalVector.Scale(-1.); 5032 BTS->NormalVector = -1 * (*TriangleWalker)->NormalVector; 4763 5033 TriangleWalker++; 4764 5034 } 4765 5035 if (!TriangleNrs.empty()) { 4766 eLog() << Verbose(0) << "There have been less triangles created than removed!" << endl; 4767 } 4768 delete(T); // remove the triangleset 4769 } 4770 5036 DoeLog(0) && (eLog() << Verbose(0) << "There have been less triangles created than removed!" << endl); 5037 } 5038 delete (T); // remove the triangleset 5039 } 4771 5040 IndexToIndex * SimplyDegeneratedTriangles = FindAllDegeneratedTriangles(); 4772 Log() << Verbose(0) << "Final list of simply degenerated triangles found, containing " << SimplyDegeneratedTriangles->size() << " triangles:" << endl;5041 DoLog(0) && (Log() << Verbose(0) << "Final list of simply degenerated triangles found, containing " << SimplyDegeneratedTriangles->size() << " triangles:" << endl); 4773 5042 IndexToIndex::iterator it; 4774 5043 for (it = SimplyDegeneratedTriangles->begin(); it != SimplyDegeneratedTriangles->end(); it++) 4775 Log() << Verbose(0) << (*it).first << " => " << (*it).second << endl; 4776 delete(SimplyDegeneratedTriangles); 4777 5044 DoLog(0) && (Log() << Verbose(0) << (*it).first << " => " << (*it).second << endl); 5045 delete (SimplyDegeneratedTriangles); 4778 5046 /// 5. exit 4779 5047 UniquePolygonSet::iterator PolygonRunner; 4780 5048 while (!ListofDegeneratedPolygons.empty()) { 4781 5049 PolygonRunner = ListofDegeneratedPolygons.begin(); 4782 delete (*PolygonRunner);5050 delete (*PolygonRunner); 4783 5051 ListofDegeneratedPolygons.erase(PolygonRunner); 4784 5052 } 4785 5053 4786 5054 return counter; 4787 }; 5055 } 5056 ;
Note:
See TracChangeset
for help on using the changeset viewer.
