source: src/vector.cpp@ edb93c

Action_Thermostats Add_AtomRandomPerturbation Add_FitFragmentPartialChargesAction Add_RotateAroundBondAction Add_SelectAtomByNameAction Added_ParseSaveFragmentResults AddingActions_SaveParseParticleParameters Adding_Graph_to_ChangeBondActions Adding_MD_integration_tests Adding_ParticleName_to_Atom Adding_StructOpt_integration_tests AtomFragments Automaking_mpqc_open AutomationFragmentation_failures Candidate_v1.5.4 Candidate_v1.6.0 Candidate_v1.6.1 Candidate_v1.7.0 ChangeBugEmailaddress ChangingTestPorts ChemicalSpaceEvaluator CombiningParticlePotentialParsing Combining_Subpackages Debian_Package_split Debian_package_split_molecuildergui_only Disabling_MemDebug Docu_Python_wait EmpiricalPotential_contain_HomologyGraph EmpiricalPotential_contain_HomologyGraph_documentation Enable_parallel_make_install Enhance_userguide Enhanced_StructuralOptimization Enhanced_StructuralOptimization_continued Example_ManyWaysToTranslateAtom Exclude_Hydrogens_annealWithBondGraph FitPartialCharges_GlobalError Fix_BoundInBox_CenterInBox_MoleculeActions Fix_ChargeSampling_PBC Fix_ChronosMutex Fix_FitPartialCharges Fix_FitPotential_needs_atomicnumbers Fix_ForceAnnealing Fix_IndependentFragmentGrids Fix_ParseParticles Fix_ParseParticles_split_forward_backward_Actions Fix_PopActions Fix_QtFragmentList_sorted_selection Fix_Restrictedkeyset_FragmentMolecule Fix_StatusMsg Fix_StepWorldTime_single_argument Fix_Verbose_Codepatterns Fix_fitting_potentials Fixes ForceAnnealing_goodresults ForceAnnealing_oldresults ForceAnnealing_tocheck ForceAnnealing_with_BondGraph ForceAnnealing_with_BondGraph_continued ForceAnnealing_with_BondGraph_continued_betteresults ForceAnnealing_with_BondGraph_contraction-expansion FragmentAction_writes_AtomFragments FragmentMolecule_checks_bonddegrees GeometryObjects Gui_Fixes Gui_displays_atomic_force_velocity ImplicitCharges IndependentFragmentGrids IndependentFragmentGrids_IndividualZeroInstances IndependentFragmentGrids_IntegrationTest IndependentFragmentGrids_Sole_NN_Calculation JobMarket_RobustOnKillsSegFaults JobMarket_StableWorkerPool JobMarket_unresolvable_hostname_fix MoreRobust_FragmentAutomation ODR_violation_mpqc_open PartialCharges_OrthogonalSummation PdbParser_setsAtomName PythonUI_with_named_parameters QtGui_reactivate_TimeChanged_changes Recreated_GuiChecks Rewrite_FitPartialCharges RotateToPrincipalAxisSystem_UndoRedo SaturateAtoms_findBestMatching SaturateAtoms_singleDegree StoppableMakroAction Subpackage_CodePatterns Subpackage_JobMarket Subpackage_LinearAlgebra Subpackage_levmar Subpackage_mpqc_open Subpackage_vmg Switchable_LogView ThirdParty_MPQC_rebuilt_buildsystem TrajectoryDependenant_MaxOrder TremoloParser_IncreasedPrecision TremoloParser_MultipleTimesteps TremoloParser_setsAtomName Ubuntu_1604_changes stable
Last change on this file since edb93c was edb93c, checked in by Frederik Heber <heber@…>, 16 years ago

Some minor fixes with regards to what needs to be included where and not more.

  • Property mode set to 100755
File size: 31.6 KB
Line 
1/** \file vector.cpp
2 *
3 * Function implementations for the class vector.
4 *
5 */
6
7
8#include "molecules.hpp"
9
10
11/************************************ Functions for class vector ************************************/
12
13/** Constructor of class vector.
14 */
15Vector::Vector() { x[0] = x[1] = x[2] = 0.; };
16
17/** Constructor of class vector.
18 */
19Vector::Vector(double x1, double x2, double x3) { x[0] = x1; x[1] = x2; x[2] = x3; };
20
21/** Desctructor of class vector.
22 */
23Vector::~Vector() {};
24
25/** Calculates square of distance between this and another vector.
26 * \param *y array to second vector
27 * \return \f$| x - y |^2\f$
28 */
29double Vector::DistanceSquared(const Vector *y) const
30{
31 double res = 0.;
32 for (int i=NDIM;i--;)
33 res += (x[i]-y->x[i])*(x[i]-y->x[i]);
34 return (res);
35};
36
37/** Calculates distance between this and another vector.
38 * \param *y array to second vector
39 * \return \f$| x - y |\f$
40 */
41double Vector::Distance(const Vector *y) const
42{
43 double res = 0.;
44 for (int i=NDIM;i--;)
45 res += (x[i]-y->x[i])*(x[i]-y->x[i]);
46 return (sqrt(res));
47};
48
49/** Calculates distance between this and another vector in a periodic cell.
50 * \param *y array to second vector
51 * \param *cell_size 6-dimensional array with (xx, xy, yy, xz, yz, zz) entries specifying the periodic cell
52 * \return \f$| x - y |\f$
53 */
54double Vector::PeriodicDistance(const Vector *y, const double *cell_size) const
55{
56 double res = Distance(y), tmp, matrix[NDIM*NDIM];
57 Vector Shiftedy, TranslationVector;
58 int N[NDIM];
59 matrix[0] = cell_size[0];
60 matrix[1] = cell_size[1];
61 matrix[2] = cell_size[3];
62 matrix[3] = cell_size[1];
63 matrix[4] = cell_size[2];
64 matrix[5] = cell_size[4];
65 matrix[6] = cell_size[3];
66 matrix[7] = cell_size[4];
67 matrix[8] = cell_size[5];
68 // in order to check the periodic distance, translate one of the vectors into each of the 27 neighbouring cells
69 for (N[0]=-1;N[0]<=1;N[0]++)
70 for (N[1]=-1;N[1]<=1;N[1]++)
71 for (N[2]=-1;N[2]<=1;N[2]++) {
72 // create the translation vector
73 TranslationVector.Zero();
74 for (int i=NDIM;i--;)
75 TranslationVector.x[i] = (double)N[i];
76 TranslationVector.MatrixMultiplication(matrix);
77 // add onto the original vector to compare with
78 Shiftedy.CopyVector(y);
79 Shiftedy.AddVector(&TranslationVector);
80 // get distance and compare with minimum so far
81 tmp = Distance(&Shiftedy);
82 if (tmp < res) res = tmp;
83 }
84 return (res);
85};
86
87/** Calculates distance between this and another vector in a periodic cell.
88 * \param *y array to second vector
89 * \param *cell_size 6-dimensional array with (xx, xy, yy, xz, yz, zz) entries specifying the periodic cell
90 * \return \f$| x - y |^2\f$
91 */
92double Vector::PeriodicDistanceSquared(const Vector *y, const double *cell_size) const
93{
94 double res = DistanceSquared(y), tmp, matrix[NDIM*NDIM];
95 Vector Shiftedy, TranslationVector;
96 int N[NDIM];
97 matrix[0] = cell_size[0];
98 matrix[1] = cell_size[1];
99 matrix[2] = cell_size[3];
100 matrix[3] = cell_size[1];
101 matrix[4] = cell_size[2];
102 matrix[5] = cell_size[4];
103 matrix[6] = cell_size[3];
104 matrix[7] = cell_size[4];
105 matrix[8] = cell_size[5];
106 // in order to check the periodic distance, translate one of the vectors into each of the 27 neighbouring cells
107 for (N[0]=-1;N[0]<=1;N[0]++)
108 for (N[1]=-1;N[1]<=1;N[1]++)
109 for (N[2]=-1;N[2]<=1;N[2]++) {
110 // create the translation vector
111 TranslationVector.Zero();
112 for (int i=NDIM;i--;)
113 TranslationVector.x[i] = (double)N[i];
114 TranslationVector.MatrixMultiplication(matrix);
115 // add onto the original vector to compare with
116 Shiftedy.CopyVector(y);
117 Shiftedy.AddVector(&TranslationVector);
118 // get distance and compare with minimum so far
119 tmp = DistanceSquared(&Shiftedy);
120 if (tmp < res) res = tmp;
121 }
122 return (res);
123};
124
125/** Keeps the vector in a periodic cell, defined by the symmetric \a *matrix.
126 * \param *out ofstream for debugging messages
127 * Tries to translate a vector into each adjacent neighbouring cell.
128 */
129void Vector::KeepPeriodic(ofstream *out, double *matrix)
130{
131// int N[NDIM];
132// bool flag = false;
133 //vector Shifted, TranslationVector;
134 Vector TestVector;
135// *out << Verbose(1) << "Begin of KeepPeriodic." << endl;
136// *out << Verbose(2) << "Vector is: ";
137// Output(out);
138// *out << endl;
139 TestVector.CopyVector(this);
140 TestVector.InverseMatrixMultiplication(matrix);
141 for(int i=NDIM;i--;) { // correct periodically
142 if (TestVector.x[i] < 0) { // get every coefficient into the interval [0,1)
143 TestVector.x[i] += ceil(TestVector.x[i]);
144 } else {
145 TestVector.x[i] -= floor(TestVector.x[i]);
146 }
147 }
148 TestVector.MatrixMultiplication(matrix);
149 CopyVector(&TestVector);
150// *out << Verbose(2) << "New corrected vector is: ";
151// Output(out);
152// *out << endl;
153// *out << Verbose(1) << "End of KeepPeriodic." << endl;
154};
155
156/** Calculates scalar product between this and another vector.
157 * \param *y array to second vector
158 * \return \f$\langle x, y \rangle\f$
159 */
160double Vector::ScalarProduct(const Vector *y) const
161{
162 double res = 0.;
163 for (int i=NDIM;i--;)
164 res += x[i]*y->x[i];
165 return (res);
166};
167
168
169/** Calculates VectorProduct between this and another vector.
170 * -# returns the Product in place of vector from which it was initiated
171 * -# ATTENTION: Only three dim.
172 * \param *y array to vector with which to calculate crossproduct
173 * \return \f$ x \times y \f&
174 */
175void Vector::VectorProduct(const Vector *y)
176{
177 Vector tmp;
178 tmp.x[0] = x[1]* (y->x[2]) - x[2]* (y->x[1]);
179 tmp.x[1] = x[2]* (y->x[0]) - x[0]* (y->x[2]);
180 tmp.x[2] = x[0]* (y->x[1]) - x[1]* (y->x[0]);
181 this->CopyVector(&tmp);
182
183};
184
185
186/** projects this vector onto plane defined by \a *y.
187 * \param *y normal vector of plane
188 * \return \f$\langle x, y \rangle\f$
189 */
190void Vector::ProjectOntoPlane(const Vector *y)
191{
192 Vector tmp;
193 tmp.CopyVector(y);
194 tmp.Normalize();
195 tmp.Scale(ScalarProduct(&tmp));
196 this->SubtractVector(&tmp);
197};
198
199/** Calculates the intersection point between a line defined by \a *LineVector and \a *LineVector2 and a plane defined by \a *Normal and \a *PlaneOffset.
200 * According to [Bronstein] the vectorial plane equation is:
201 * -# \f$\stackrel{r}{\rightarrow} \cdot \stackrel{N}{\rightarrow} + D = 0\f$,
202 * where \f$\stackrel{r}{\rightarrow}\f$ is the vector to be testet, \f$\stackrel{N}{\rightarrow}\f$ is the plane's normal vector and
203 * \f$D = - \stackrel{a}{\rightarrow} \stackrel{N}{\rightarrow}\f$, the offset with respect to origin, if \f$\stackrel{a}{\rightarrow}\f$,
204 * is an offset vector onto the plane. The line is parametrized by \f$\stackrel{x}{\rightarrow} + k \stackrel{t}{\rightarrow}\f$, where
205 * \f$\stackrel{x}{\rightarrow}\f$ is the offset and \f$\stackrel{t}{\rightarrow}\f$ the directional vector (NOTE: No need to normalize
206 * the latter). Inserting the parametrized form into the plane equation and solving for \f$k\f$, which we insert then into the parametrization
207 * of the line yields the intersection point on the plane.
208 * \param *out output stream for debugging
209 * \param *PlaneNormal Plane's normal vector
210 * \param *PlaneOffset Plane's offset vector
211 * \param *LineVector first vector of line
212 * \param *LineVector2 second vector of line
213 * \return true - \a this contains intersection point on return, false - line is parallel to plane
214 */
215bool Vector::GetIntersectionWithPlane(ofstream *out, Vector *PlaneNormal, Vector *PlaneOffset, Vector *LineVector, Vector *LineVector2)
216{
217 double factor;
218 Vector Direction;
219
220 // find intersection of a line defined by Offset and Direction with a plane defined by triangle
221 Direction.CopyVector(LineVector2);
222 Direction.SubtractVector(LineVector);
223 if (Direction.ScalarProduct(PlaneNormal) < MYEPSILON)
224 return false;
225 factor = LineVector->ScalarProduct(PlaneNormal)*(-PlaneOffset->ScalarProduct(PlaneNormal))/(Direction.ScalarProduct(PlaneNormal));
226 Direction.Scale(factor);
227 CopyVector(LineVector);
228 SubtractVector(&Direction);
229
230 // test whether resulting vector really is on plane
231 Direction.CopyVector(this);
232 Direction.SubtractVector(PlaneOffset);
233 if (Direction.ScalarProduct(PlaneNormal) > MYEPSILON)
234 return true;
235 else
236 return false;
237};
238
239/** Calculates the intersection of the two lines that are both on the same plane.
240 * Note that we do not check whether they are on the same plane.
241 * \param *out output stream for debugging
242 * \param *Line1a first vector of first line
243 * \param *Line1b second vector of first line
244 * \param *Line2a first vector of second line
245 * \param *Line2b second vector of second line
246 * \return true - \a this will contain the intersection on return, false - lines are parallel
247 */
248bool Vector::GetIntersectionOfTwoLinesOnPlane(ofstream *out, Vector *Line1a, Vector *Line1b, Vector *Line2a, Vector *Line2b)
249{
250 double k1,a1,h1,b1,k2,a2,h2,b2;
251 // equation for line 1
252 if (fabs(Line1a->x[0] - Line2a->x[0]) < MYEPSILON) {
253 k1 = 0;
254 h1 = 0;
255 } else {
256 k1 = (Line1a->x[1] - Line2a->x[1])/(Line1a->x[0] - Line2a->x[0]);
257 h1 = (Line1a->x[2] - Line2a->x[2])/(Line1a->x[0] - Line2a->x[0]);
258 }
259 a1 = 0.5*((Line1a->x[1] + Line2a->x[1]) - k1*(Line1a->x[0] + Line2a->x[0]));
260 b1 = 0.5*((Line1a->x[2] + Line2a->x[2]) - h1*(Line1a->x[0] + Line2a->x[0]));
261
262 // equation for line 2
263 if (fabs(Line2a->x[0] - Line2a->x[0]) < MYEPSILON) {
264 k1 = 0;
265 h1 = 0;
266 } else {
267 k1 = (Line2a->x[1] - Line2a->x[1])/(Line2a->x[0] - Line2a->x[0]);
268 h1 = (Line2a->x[2] - Line2a->x[2])/(Line2a->x[0] - Line2a->x[0]);
269 }
270 a1 = 0.5*((Line2a->x[1] + Line2a->x[1]) - k1*(Line2a->x[0] + Line2a->x[0]));
271 b1 = 0.5*((Line2a->x[2] + Line2a->x[2]) - h1*(Line2a->x[0] + Line2a->x[0]));
272
273 // calculate cross point
274 if (fabs((a1-a2)*(h1-h2) - (b1-b2)*(k1-k2)) < MYEPSILON) {
275 x[0] = (a2-a1)/(k1-k2);
276 x[1] = (k1*a2-k2*a1)/(k1-k2);
277 x[2] = (h1*b2-h2*b1)/(h1-h2);
278 *out << Verbose(4) << "Lines do intersect at " << this << "." << endl;
279 return true;
280 } else {
281 *out << Verbose(4) << "Lines do not intersect." << endl;
282 return false;
283 }
284};
285
286/** Calculates the projection of a vector onto another \a *y.
287 * \param *y array to second vector
288 * \return \f$\langle x, y \rangle\f$
289 */
290double Vector::Projection(const Vector *y) const
291{
292 return (ScalarProduct(y));
293};
294
295/** Calculates norm of this vector.
296 * \return \f$|x|\f$
297 */
298double Vector::Norm() const
299{
300 double res = 0.;
301 for (int i=NDIM;i--;)
302 res += this->x[i]*this->x[i];
303 return (sqrt(res));
304};
305
306/** Calculates squared norm of this vector.
307 * \return \f$|x|^2\f$
308 */
309double Vector::NormSquared() const
310{
311 return (ScalarProduct(this));
312};
313
314/** Normalizes this vector.
315 */
316void Vector::Normalize()
317{
318 double res = 0.;
319 for (int i=NDIM;i--;)
320 res += this->x[i]*this->x[i];
321 if (fabs(res) > MYEPSILON)
322 res = 1./sqrt(res);
323 Scale(&res);
324};
325
326/** Zeros all components of this vector.
327 */
328void Vector::Zero()
329{
330 for (int i=NDIM;i--;)
331 this->x[i] = 0.;
332};
333
334/** Zeros all components of this vector.
335 */
336void Vector::One(double one)
337{
338 for (int i=NDIM;i--;)
339 this->x[i] = one;
340};
341
342/** Initialises all components of this vector.
343 */
344void Vector::Init(double x1, double x2, double x3)
345{
346 x[0] = x1;
347 x[1] = x2;
348 x[2] = x3;
349};
350
351/** Calculates the angle between this and another vector.
352 * \param *y array to second vector
353 * \return \f$\acos\bigl(frac{\langle x, y \rangle}{|x||y|}\bigr)\f$
354 */
355double Vector::Angle(const Vector *y) const
356{
357 double norm1 = Norm(), norm2 = y->Norm();
358 double angle = 1;
359 if ((fabs(norm1) > MYEPSILON) && (fabs(norm2) > MYEPSILON))
360 angle = this->ScalarProduct(y)/norm1/norm2;
361 // -1-MYEPSILON occured due to numerical imprecision, catch ...
362 //cout << Verbose(2) << "INFO: acos(-1) = " << acos(-1) << ", acos(-1+MYEPSILON) = " << acos(-1+MYEPSILON) << ", acos(-1-MYEPSILON) = " << acos(-1-MYEPSILON) << "." << endl;
363 if (angle < -1)
364 angle = -1;
365 if (angle > 1)
366 angle = 1;
367 return acos(angle);
368};
369
370/** Rotates the vector around the axis given by \a *axis by an angle of \a alpha.
371 * \param *axis rotation axis
372 * \param alpha rotation angle in radian
373 */
374void Vector::RotateVector(const Vector *axis, const double alpha)
375{
376 Vector a,y;
377 // normalise this vector with respect to axis
378 a.CopyVector(this);
379 a.Scale(Projection(axis));
380 SubtractVector(&a);
381 // construct normal vector
382 y.MakeNormalVector(axis,this);
383 y.Scale(Norm());
384 // scale normal vector by sine and this vector by cosine
385 y.Scale(sin(alpha));
386 Scale(cos(alpha));
387 // add scaled normal vector onto this vector
388 AddVector(&y);
389 // add part in axis direction
390 AddVector(&a);
391};
392
393/** Sums vector \a to this lhs component-wise.
394 * \param a base vector
395 * \param b vector components to add
396 * \return lhs + a
397 */
398Vector& operator+=(Vector& a, const Vector& b)
399{
400 a.AddVector(&b);
401 return a;
402};
403/** factor each component of \a a times a double \a m.
404 * \param a base vector
405 * \param m factor
406 * \return lhs.x[i] * m
407 */
408Vector& operator*=(Vector& a, const double m)
409{
410 a.Scale(m);
411 return a;
412};
413
414/** Sums two vectors \a and \b component-wise.
415 * \param a first vector
416 * \param b second vector
417 * \return a + b
418 */
419Vector& operator+(const Vector& a, const Vector& b)
420{
421 Vector *x = new Vector;
422 x->CopyVector(&a);
423 x->AddVector(&b);
424 return *x;
425};
426
427/** Factors given vector \a a times \a m.
428 * \param a vector
429 * \param m factor
430 * \return a + b
431 */
432Vector& operator*(const Vector& a, const double m)
433{
434 Vector *x = new Vector;
435 x->CopyVector(&a);
436 x->Scale(m);
437 return *x;
438};
439
440/** Prints a 3dim vector.
441 * prints no end of line.
442 * \param *out output stream
443 */
444bool Vector::Output(ofstream *out) const
445{
446 if (out != NULL) {
447 *out << "(";
448 for (int i=0;i<NDIM;i++) {
449 *out << x[i];
450 if (i != 2)
451 *out << ",";
452 }
453 *out << ")";
454 return true;
455 } else
456 return false;
457};
458
459ostream& operator<<(ostream& ost,Vector& m)
460{
461 ost << "(";
462 for (int i=0;i<NDIM;i++) {
463 ost << m.x[i];
464 if (i != 2)
465 ost << ",";
466 }
467 ost << ")";
468 return ost;
469};
470
471/** Scales each atom coordinate by an individual \a factor.
472 * \param *factor pointer to scaling factor
473 */
474void Vector::Scale(double **factor)
475{
476 for (int i=NDIM;i--;)
477 x[i] *= (*factor)[i];
478};
479
480void Vector::Scale(double *factor)
481{
482 for (int i=NDIM;i--;)
483 x[i] *= *factor;
484};
485
486void Vector::Scale(double factor)
487{
488 for (int i=NDIM;i--;)
489 x[i] *= factor;
490};
491
492/** Translate atom by given vector.
493 * \param trans[] translation vector.
494 */
495void Vector::Translate(const Vector *trans)
496{
497 for (int i=NDIM;i--;)
498 x[i] += trans->x[i];
499};
500
501/** Do a matrix multiplication.
502 * \param *matrix NDIM_NDIM array
503 */
504void Vector::MatrixMultiplication(double *M)
505{
506 Vector C;
507 // do the matrix multiplication
508 C.x[0] = M[0]*x[0]+M[3]*x[1]+M[6]*x[2];
509 C.x[1] = M[1]*x[0]+M[4]*x[1]+M[7]*x[2];
510 C.x[2] = M[2]*x[0]+M[5]*x[1]+M[8]*x[2];
511 // transfer the result into this
512 for (int i=NDIM;i--;)
513 x[i] = C.x[i];
514};
515
516/** Calculate the inverse of a 3x3 matrix.
517 * \param *matrix NDIM_NDIM array
518 */
519double * Vector::InverseMatrix(double *A)
520{
521 double *B = (double *) Malloc(sizeof(double)*NDIM*NDIM, "Vector::InverseMatrix: *B");
522 double detA = RDET3(A);
523 double detAReci;
524
525 for (int i=0;i<NDIM*NDIM;++i)
526 B[i] = 0.;
527 // calculate the inverse B
528 if (fabs(detA) > MYEPSILON) {; // RDET3(A) yields precisely zero if A irregular
529 detAReci = 1./detA;
530 B[0] = detAReci*RDET2(A[4],A[5],A[7],A[8]); // A_11
531 B[1] = -detAReci*RDET2(A[1],A[2],A[7],A[8]); // A_12
532 B[2] = detAReci*RDET2(A[1],A[2],A[4],A[5]); // A_13
533 B[3] = -detAReci*RDET2(A[3],A[5],A[6],A[8]); // A_21
534 B[4] = detAReci*RDET2(A[0],A[2],A[6],A[8]); // A_22
535 B[5] = -detAReci*RDET2(A[0],A[2],A[3],A[5]); // A_23
536 B[6] = detAReci*RDET2(A[3],A[4],A[6],A[7]); // A_31
537 B[7] = -detAReci*RDET2(A[0],A[1],A[6],A[7]); // A_32
538 B[8] = detAReci*RDET2(A[0],A[1],A[3],A[4]); // A_33
539 }
540 return B;
541};
542
543/** Do a matrix multiplication with the \a *A' inverse.
544 * \param *matrix NDIM_NDIM array
545 */
546void Vector::InverseMatrixMultiplication(double *A)
547{
548 Vector C;
549 double B[NDIM*NDIM];
550 double detA = RDET3(A);
551 double detAReci;
552
553 // calculate the inverse B
554 if (fabs(detA) > MYEPSILON) {; // RDET3(A) yields precisely zero if A irregular
555 detAReci = 1./detA;
556 B[0] = detAReci*RDET2(A[4],A[5],A[7],A[8]); // A_11
557 B[1] = -detAReci*RDET2(A[1],A[2],A[7],A[8]); // A_12
558 B[2] = detAReci*RDET2(A[1],A[2],A[4],A[5]); // A_13
559 B[3] = -detAReci*RDET2(A[3],A[5],A[6],A[8]); // A_21
560 B[4] = detAReci*RDET2(A[0],A[2],A[6],A[8]); // A_22
561 B[5] = -detAReci*RDET2(A[0],A[2],A[3],A[5]); // A_23
562 B[6] = detAReci*RDET2(A[3],A[4],A[6],A[7]); // A_31
563 B[7] = -detAReci*RDET2(A[0],A[1],A[6],A[7]); // A_32
564 B[8] = detAReci*RDET2(A[0],A[1],A[3],A[4]); // A_33
565
566 // do the matrix multiplication
567 C.x[0] = B[0]*x[0]+B[3]*x[1]+B[6]*x[2];
568 C.x[1] = B[1]*x[0]+B[4]*x[1]+B[7]*x[2];
569 C.x[2] = B[2]*x[0]+B[5]*x[1]+B[8]*x[2];
570 // transfer the result into this
571 for (int i=NDIM;i--;)
572 x[i] = C.x[i];
573 } else {
574 cerr << "ERROR: inverse of matrix does not exists: det A = " << detA << "." << endl;
575 }
576};
577
578
579/** Creates this vector as the b y *factors' components scaled linear combination of the given three.
580 * this vector = x1*factors[0] + x2* factors[1] + x3*factors[2]
581 * \param *x1 first vector
582 * \param *x2 second vector
583 * \param *x3 third vector
584 * \param *factors three-component vector with the factor for each given vector
585 */
586void Vector::LinearCombinationOfVectors(const Vector *x1, const Vector *x2, const Vector *x3, double *factors)
587{
588 for(int i=NDIM;i--;)
589 x[i] = factors[0]*x1->x[i] + factors[1]*x2->x[i] + factors[2]*x3->x[i];
590};
591
592/** Mirrors atom against a given plane.
593 * \param n[] normal vector of mirror plane.
594 */
595void Vector::Mirror(const Vector *n)
596{
597 double projection;
598 projection = ScalarProduct(n)/n->ScalarProduct(n); // remove constancy from n (keep as logical one)
599 // withdraw projected vector twice from original one
600 cout << Verbose(1) << "Vector: ";
601 Output((ofstream *)&cout);
602 cout << "\t";
603 for (int i=NDIM;i--;)
604 x[i] -= 2.*projection*n->x[i];
605 cout << "Projected vector: ";
606 Output((ofstream *)&cout);
607 cout << endl;
608};
609
610/** Calculates normal vector for three given vectors (being three points in space).
611 * Makes this vector orthonormal to the three given points, making up a place in 3d space.
612 * \param *y1 first vector
613 * \param *y2 second vector
614 * \param *y3 third vector
615 * \return true - success, vectors are linear independent, false - failure due to linear dependency
616 */
617bool Vector::MakeNormalVector(const Vector *y1, const Vector *y2, const Vector *y3)
618{
619 Vector x1, x2;
620
621 x1.CopyVector(y1);
622 x1.SubtractVector(y2);
623 x2.CopyVector(y3);
624 x2.SubtractVector(y2);
625 if ((fabs(x1.Norm()) < MYEPSILON) || (fabs(x2.Norm()) < MYEPSILON) || (fabs(x1.Angle(&x2)) < MYEPSILON)) {
626 cout << Verbose(4) << "Given vectors are linear dependent." << endl;
627 return false;
628 }
629// cout << Verbose(4) << "relative, first plane coordinates:";
630// x1.Output((ofstream *)&cout);
631// cout << endl;
632// cout << Verbose(4) << "second plane coordinates:";
633// x2.Output((ofstream *)&cout);
634// cout << endl;
635
636 this->x[0] = (x1.x[1]*x2.x[2] - x1.x[2]*x2.x[1]);
637 this->x[1] = (x1.x[2]*x2.x[0] - x1.x[0]*x2.x[2]);
638 this->x[2] = (x1.x[0]*x2.x[1] - x1.x[1]*x2.x[0]);
639 Normalize();
640
641 return true;
642};
643
644
645/** Calculates orthonormal vector to two given vectors.
646 * Makes this vector orthonormal to two given vectors. This is very similar to the other
647 * vector::MakeNormalVector(), only there three points whereas here two difference
648 * vectors are given.
649 * \param *x1 first vector
650 * \param *x2 second vector
651 * \return true - success, vectors are linear independent, false - failure due to linear dependency
652 */
653bool Vector::MakeNormalVector(const Vector *y1, const Vector *y2)
654{
655 Vector x1,x2;
656 x1.CopyVector(y1);
657 x2.CopyVector(y2);
658 Zero();
659 if ((fabs(x1.Norm()) < MYEPSILON) || (fabs(x2.Norm()) < MYEPSILON) || (fabs(x1.Angle(&x2)) < MYEPSILON)) {
660 cout << Verbose(4) << "Given vectors are linear dependent." << endl;
661 return false;
662 }
663// cout << Verbose(4) << "relative, first plane coordinates:";
664// x1.Output((ofstream *)&cout);
665// cout << endl;
666// cout << Verbose(4) << "second plane coordinates:";
667// x2.Output((ofstream *)&cout);
668// cout << endl;
669
670 this->x[0] = (x1.x[1]*x2.x[2] - x1.x[2]*x2.x[1]);
671 this->x[1] = (x1.x[2]*x2.x[0] - x1.x[0]*x2.x[2]);
672 this->x[2] = (x1.x[0]*x2.x[1] - x1.x[1]*x2.x[0]);
673 Normalize();
674
675 return true;
676};
677
678/** Calculates orthonormal vector to one given vectors.
679 * Just subtracts the projection onto the given vector from this vector.
680 * \param *x1 vector
681 * \return true - success, false - vector is zero
682 */
683bool Vector::MakeNormalVector(const Vector *y1)
684{
685 bool result = false;
686 Vector x1;
687 x1.CopyVector(y1);
688 x1.Scale(x1.Projection(this));
689 SubtractVector(&x1);
690 for (int i=NDIM;i--;)
691 result = result || (fabs(x[i]) > MYEPSILON);
692
693 return result;
694};
695
696/** Creates this vector as one of the possible orthonormal ones to the given one.
697 * Just scan how many components of given *vector are unequal to zero and
698 * try to get the skp of both to be zero accordingly.
699 * \param *vector given vector
700 * \return true - success, false - failure (null vector given)
701 */
702bool Vector::GetOneNormalVector(const Vector *GivenVector)
703{
704 int Components[NDIM]; // contains indices of non-zero components
705 int Last = 0; // count the number of non-zero entries in vector
706 int j; // loop variables
707 double norm;
708
709 cout << Verbose(4);
710 GivenVector->Output((ofstream *)&cout);
711 cout << endl;
712 for (j=NDIM;j--;)
713 Components[j] = -1;
714 // find two components != 0
715 for (j=0;j<NDIM;j++)
716 if (fabs(GivenVector->x[j]) > MYEPSILON)
717 Components[Last++] = j;
718 cout << Verbose(4) << Last << " Components != 0: (" << Components[0] << "," << Components[1] << "," << Components[2] << ")" << endl;
719
720 switch(Last) {
721 case 3: // threecomponent system
722 case 2: // two component system
723 norm = sqrt(1./(GivenVector->x[Components[1]]*GivenVector->x[Components[1]]) + 1./(GivenVector->x[Components[0]]*GivenVector->x[Components[0]]));
724 x[Components[2]] = 0.;
725 // in skp both remaining parts shall become zero but with opposite sign and third is zero
726 x[Components[1]] = -1./GivenVector->x[Components[1]] / norm;
727 x[Components[0]] = 1./GivenVector->x[Components[0]] / norm;
728 return true;
729 break;
730 case 1: // one component system
731 // set sole non-zero component to 0, and one of the other zero component pendants to 1
732 x[(Components[0]+2)%NDIM] = 0.;
733 x[(Components[0]+1)%NDIM] = 1.;
734 x[Components[0]] = 0.;
735 return true;
736 break;
737 default:
738 return false;
739 }
740};
741
742/** Determines paramter needed to multiply this vector to obtain intersection point with plane defined by \a *A, \a *B and \a *C.
743 * \param *A first plane vector
744 * \param *B second plane vector
745 * \param *C third plane vector
746 * \return scaling parameter for this vector
747 */
748double Vector::CutsPlaneAt(Vector *A, Vector *B, Vector *C)
749{
750// cout << Verbose(3) << "For comparison: ";
751// cout << "A " << A->Projection(this) << "\t";
752// cout << "B " << B->Projection(this) << "\t";
753// cout << "C " << C->Projection(this) << "\t";
754// cout << endl;
755 return A->Projection(this);
756};
757
758/** Creates a new vector as the one with least square distance to a given set of \a vectors.
759 * \param *vectors set of vectors
760 * \param num number of vectors
761 * \return true if success, false if failed due to linear dependency
762 */
763bool Vector::LSQdistance(Vector **vectors, int num)
764{
765 int j;
766
767 for (j=0;j<num;j++) {
768 cout << Verbose(1) << j << "th atom's vector: ";
769 (vectors[j])->Output((ofstream *)&cout);
770 cout << endl;
771 }
772
773 int np = 3;
774 struct LSQ_params par;
775
776 const gsl_multimin_fminimizer_type *T =
777 gsl_multimin_fminimizer_nmsimplex;
778 gsl_multimin_fminimizer *s = NULL;
779 gsl_vector *ss, *y;
780 gsl_multimin_function minex_func;
781
782 size_t iter = 0, i;
783 int status;
784 double size;
785
786 /* Initial vertex size vector */
787 ss = gsl_vector_alloc (np);
788 y = gsl_vector_alloc (np);
789
790 /* Set all step sizes to 1 */
791 gsl_vector_set_all (ss, 1.0);
792
793 /* Starting point */
794 par.vectors = vectors;
795 par.num = num;
796
797 for (i=NDIM;i--;)
798 gsl_vector_set(y, i, (vectors[0]->x[i] - vectors[1]->x[i])/2.);
799
800 /* Initialize method and iterate */
801 minex_func.f = &LSQ;
802 minex_func.n = np;
803 minex_func.params = (void *)&par;
804
805 s = gsl_multimin_fminimizer_alloc (T, np);
806 gsl_multimin_fminimizer_set (s, &minex_func, y, ss);
807
808 do
809 {
810 iter++;
811 status = gsl_multimin_fminimizer_iterate(s);
812
813 if (status)
814 break;
815
816 size = gsl_multimin_fminimizer_size (s);
817 status = gsl_multimin_test_size (size, 1e-2);
818
819 if (status == GSL_SUCCESS)
820 {
821 printf ("converged to minimum at\n");
822 }
823
824 printf ("%5d ", (int)iter);
825 for (i = 0; i < (size_t)np; i++)
826 {
827 printf ("%10.3e ", gsl_vector_get (s->x, i));
828 }
829 printf ("f() = %7.3f size = %.3f\n", s->fval, size);
830 }
831 while (status == GSL_CONTINUE && iter < 100);
832
833 for (i=(size_t)np;i--;)
834 this->x[i] = gsl_vector_get(s->x, i);
835 gsl_vector_free(y);
836 gsl_vector_free(ss);
837 gsl_multimin_fminimizer_free (s);
838
839 return true;
840};
841
842/** Adds vector \a *y componentwise.
843 * \param *y vector
844 */
845void Vector::AddVector(const Vector *y)
846{
847 for (int i=NDIM;i--;)
848 this->x[i] += y->x[i];
849}
850
851/** Adds vector \a *y componentwise.
852 * \param *y vector
853 */
854void Vector::SubtractVector(const Vector *y)
855{
856 for (int i=NDIM;i--;)
857 this->x[i] -= y->x[i];
858}
859
860/** Copy vector \a *y componentwise.
861 * \param *y vector
862 */
863void Vector::CopyVector(const Vector *y)
864{
865 for (int i=NDIM;i--;)
866 this->x[i] = y->x[i];
867}
868
869
870/** Asks for position, checks for boundary.
871 * \param cell_size unitary size of cubic cell, coordinates must be within 0...cell_size
872 * \param check whether bounds shall be checked (true) or not (false)
873 */
874void Vector::AskPosition(double *cell_size, bool check)
875{
876 char coords[3] = {'x','y','z'};
877 int j = -1;
878 for (int i=0;i<3;i++) {
879 j += i+1;
880 do {
881 cout << Verbose(0) << coords[i] << "[0.." << cell_size[j] << "]: ";
882 cin >> x[i];
883 } while (((x[i] < 0) || (x[i] >= cell_size[j])) && (check));
884 }
885};
886
887/** Solves a vectorial system consisting of two orthogonal statements and a norm statement.
888 * This is linear system of equations to be solved, however of the three given (skp of this vector\
889 * with either of the three hast to be zero) only two are linear independent. The third equation
890 * is that the vector should be of magnitude 1 (orthonormal). This all leads to a case-based solution
891 * where very often it has to be checked whether a certain value is zero or not and thus forked into
892 * another case.
893 * \param *x1 first vector
894 * \param *x2 second vector
895 * \param *y third vector
896 * \param alpha first angle
897 * \param beta second angle
898 * \param c norm of final vector
899 * \return a vector with \f$\langle x1,x2 \rangle=A\f$, \f$\langle x1,y \rangle = B\f$ and with norm \a c.
900 * \bug this is not yet working properly
901 */
902bool Vector::SolveSystem(Vector *x1, Vector *x2, Vector *y, double alpha, double beta, double c)
903{
904 double D1,D2,D3,E1,E2,F1,F2,F3,p,q=0., A, B1, B2, C;
905 double ang; // angle on testing
906 double sign[3];
907 int i,j,k;
908 A = cos(alpha) * x1->Norm() * c;
909 B1 = cos(beta + M_PI/2.) * y->Norm() * c;
910 B2 = cos(beta) * x2->Norm() * c;
911 C = c * c;
912 cout << Verbose(2) << "A " << A << "\tB " << B1 << "\tC " << C << endl;
913 int flag = 0;
914 if (fabs(x1->x[0]) < MYEPSILON) { // check for zero components for the later flipping and back-flipping
915 if (fabs(x1->x[1]) > MYEPSILON) {
916 flag = 1;
917 } else if (fabs(x1->x[2]) > MYEPSILON) {
918 flag = 2;
919 } else {
920 return false;
921 }
922 }
923 switch (flag) {
924 default:
925 case 0:
926 break;
927 case 2:
928 flip(&x1->x[0],&x1->x[1]);
929 flip(&x2->x[0],&x2->x[1]);
930 flip(&y->x[0],&y->x[1]);
931 //flip(&x[0],&x[1]);
932 flip(&x1->x[1],&x1->x[2]);
933 flip(&x2->x[1],&x2->x[2]);
934 flip(&y->x[1],&y->x[2]);
935 //flip(&x[1],&x[2]);
936 case 1:
937 flip(&x1->x[0],&x1->x[1]);
938 flip(&x2->x[0],&x2->x[1]);
939 flip(&y->x[0],&y->x[1]);
940 //flip(&x[0],&x[1]);
941 flip(&x1->x[1],&x1->x[2]);
942 flip(&x2->x[1],&x2->x[2]);
943 flip(&y->x[1],&y->x[2]);
944 //flip(&x[1],&x[2]);
945 break;
946 }
947 // now comes the case system
948 D1 = -y->x[0]/x1->x[0]*x1->x[1]+y->x[1];
949 D2 = -y->x[0]/x1->x[0]*x1->x[2]+y->x[2];
950 D3 = y->x[0]/x1->x[0]*A-B1;
951 cout << Verbose(2) << "D1 " << D1 << "\tD2 " << D2 << "\tD3 " << D3 << "\n";
952 if (fabs(D1) < MYEPSILON) {
953 cout << Verbose(2) << "D1 == 0!\n";
954 if (fabs(D2) > MYEPSILON) {
955 cout << Verbose(3) << "D2 != 0!\n";
956 x[2] = -D3/D2;
957 E1 = A/x1->x[0] + x1->x[2]/x1->x[0]*D3/D2;
958 E2 = -x1->x[1]/x1->x[0];
959 cout << Verbose(3) << "E1 " << E1 << "\tE2 " << E2 << "\n";
960 F1 = E1*E1 + 1.;
961 F2 = -E1*E2;
962 F3 = E1*E1 + D3*D3/(D2*D2) - C;
963 cout << Verbose(3) << "F1 " << F1 << "\tF2 " << F2 << "\tF3 " << F3 << "\n";
964 if (fabs(F1) < MYEPSILON) {
965 cout << Verbose(4) << "F1 == 0!\n";
966 cout << Verbose(4) << "Gleichungssystem linear\n";
967 x[1] = F3/(2.*F2);
968 } else {
969 p = F2/F1;
970 q = p*p - F3/F1;
971 cout << Verbose(4) << "p " << p << "\tq " << q << endl;
972 if (q < 0) {
973 cout << Verbose(4) << "q < 0" << endl;
974 return false;
975 }
976 x[1] = p + sqrt(q);
977 }
978 x[0] = A/x1->x[0] - x1->x[1]/x1->x[0]*x[1] + x1->x[2]/x1->x[0]*x[2];
979 } else {
980 cout << Verbose(2) << "Gleichungssystem unterbestimmt\n";
981 return false;
982 }
983 } else {
984 E1 = A/x1->x[0]+x1->x[1]/x1->x[0]*D3/D1;
985 E2 = x1->x[1]/x1->x[0]*D2/D1 - x1->x[2];
986 cout << Verbose(2) << "E1 " << E1 << "\tE2 " << E2 << "\n";
987 F1 = E2*E2 + D2*D2/(D1*D1) + 1.;
988 F2 = -(E1*E2 + D2*D3/(D1*D1));
989 F3 = E1*E1 + D3*D3/(D1*D1) - C;
990 cout << Verbose(2) << "F1 " << F1 << "\tF2 " << F2 << "\tF3 " << F3 << "\n";
991 if (fabs(F1) < MYEPSILON) {
992 cout << Verbose(3) << "F1 == 0!\n";
993 cout << Verbose(3) << "Gleichungssystem linear\n";
994 x[2] = F3/(2.*F2);
995 } else {
996 p = F2/F1;
997 q = p*p - F3/F1;
998 cout << Verbose(3) << "p " << p << "\tq " << q << endl;
999 if (q < 0) {
1000 cout << Verbose(3) << "q < 0" << endl;
1001 return false;
1002 }
1003 x[2] = p + sqrt(q);
1004 }
1005 x[1] = (-D2 * x[2] - D3)/D1;
1006 x[0] = A/x1->x[0] - x1->x[1]/x1->x[0]*x[1] + x1->x[2]/x1->x[0]*x[2];
1007 }
1008 switch (flag) { // back-flipping
1009 default:
1010 case 0:
1011 break;
1012 case 2:
1013 flip(&x1->x[0],&x1->x[1]);
1014 flip(&x2->x[0],&x2->x[1]);
1015 flip(&y->x[0],&y->x[1]);
1016 flip(&x[0],&x[1]);
1017 flip(&x1->x[1],&x1->x[2]);
1018 flip(&x2->x[1],&x2->x[2]);
1019 flip(&y->x[1],&y->x[2]);
1020 flip(&x[1],&x[2]);
1021 case 1:
1022 flip(&x1->x[0],&x1->x[1]);
1023 flip(&x2->x[0],&x2->x[1]);
1024 flip(&y->x[0],&y->x[1]);
1025 //flip(&x[0],&x[1]);
1026 flip(&x1->x[1],&x1->x[2]);
1027 flip(&x2->x[1],&x2->x[2]);
1028 flip(&y->x[1],&y->x[2]);
1029 flip(&x[1],&x[2]);
1030 break;
1031 }
1032 // one z component is only determined by its radius (without sign)
1033 // thus check eight possible sign flips and determine by checking angle with second vector
1034 for (i=0;i<8;i++) {
1035 // set sign vector accordingly
1036 for (j=2;j>=0;j--) {
1037 k = (i & pot(2,j)) << j;
1038 cout << Verbose(2) << "k " << k << "\tpot(2,j) " << pot(2,j) << endl;
1039 sign[j] = (k == 0) ? 1. : -1.;
1040 }
1041 cout << Verbose(2) << i << ": sign matrix is " << sign[0] << "\t" << sign[1] << "\t" << sign[2] << "\n";
1042 // apply sign matrix
1043 for (j=NDIM;j--;)
1044 x[j] *= sign[j];
1045 // calculate angle and check
1046 ang = x2->Angle (this);
1047 cout << Verbose(1) << i << "th angle " << ang << "\tbeta " << cos(beta) << " :\t";
1048 if (fabs(ang - cos(beta)) < MYEPSILON) {
1049 break;
1050 }
1051 // unapply sign matrix (is its own inverse)
1052 for (j=NDIM;j--;)
1053 x[j] *= sign[j];
1054 }
1055 return true;
1056};
Note: See TracBrowser for help on using the repository browser.